首页> 外文期刊>Analytical Chemistry >Flow Batteries for Microfluidic Networks: Configuring An Electroosmotic Pump for Nonterminal Positions
【24h】

Flow Batteries for Microfluidic Networks: Configuring An Electroosmotic Pump for Nonterminal Positions

机译:微流体网络的流动电池:为非终端位置配置电渗泵

获取原文
获取原文并翻译 | 示例
           

摘要

ABSTRACT: A micropump provides flow and pressure for a lab-on-chipndevice, just as a battery supplies current and voltage for an electronicnsystem. Numerous micropumps have been developed, but none is asnversatile as a battery. One cannot easily insert a micropump into annonterminal position of a fluidic line without affecting the rest of thenfluidic system, and one cannot simply connect severalmicropumps in seriesnto enhance the pressure output, etc. In this work we develop a flow batteryn(or pressure power supply) to address this issue. A flow battery consists of anþEOP (in which the liquid flows in the same direction as the field gradient)nand a -EOP (in which the liquid flows opposite to the electric fieldngradient), and the outlet of the þEOP is directly connected to the inlet of the -EOP. An external high voltage is applied to thisnoutlet-inlet joint via a short gel-filled capillary that allows ions but not bulk liquid flow, while the þEOP’s inlet and the -EOP’snoutlet (the flow battery’s inlet and outlet) are grounded. This flow battery can be deployed anywhere in a fluidic network withoutnelectrically affecting the rest of the system. Several flow batteries can be connected in series to enhance the pressure output to drivenHPLC separations. In a fluidic system powered by flow batteries, a hydraulic equivalent of Ohm’s law can be applied to analyzensystem pressures and flow rates.
机译:摘要:微型泵为芯片实验室设备提供流量和压力,就像电池为电子系统提供电流和电压一样。已经开发了许多微型泵,但是没有一个能像电池一样通用。在不影响其余流体系统的情况下,一个人不能轻易地将一个微型泵插入流体管线的非终端位置,并且一个人不能简单地串联几个微型泵来提高压力输出,等等。在这项工作中,我们开发了一种流动电池(或压力电源)解决这个问题。流量电池由一个EOP(其中液体以与电场梯度相同的方向流动)和一个-EOP(其中液体流与电场梯度相反)组成,EOP的出口直接连接到入口。 -EOP。外部高压通过一个短凝胶填充的毛细管施加到该出口的入口接头,该毛细管允许离子但不允许大量的液体流过,而“ EOP”的入口和-EOP的出口(流动电池的入口和出口)接地。该流电池可以部署在流体网络中的任何位置,而无需电影响系统的其余部分。几个流电池可以串联连接,以提高驱动色谱分离的压力输出。在由流电池供电的流体系统中,可以使用欧姆定律的等效液压来分析系统压力和流率。

著录项

  • 来源
    《Analytical Chemistry》 |2011年第7期|p.2430-2433|共4页
  • 作者单位

    †Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019, United States‡College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, P. R. China§Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号