...
首页> 外文期刊>American Journal of Neuroradiology >In Vitro Evaluation of MR Imaging Issues at 3T for Aneurysm Clips Made from MP35N: Findings and Information Applied to 155 Additional Aneurysm Clips
【24h】

In Vitro Evaluation of MR Imaging Issues at 3T for Aneurysm Clips Made from MP35N: Findings and Information Applied to 155 Additional Aneurysm Clips

机译:由MP35N制成的3T动脉瘤夹的MR成像问题的体外评估:研究结果和信息应用于155个其他动脉瘤夹

获取原文
获取原文并翻译 | 示例
           

摘要

BACKGROUND AND PURPOSE: Aneurysm clips need to be tested at 3T to characterize MR imaging concerns, including magnetic field interactions, MR imaging–related heating, and artifacts. Therefore, we evaluated these risks for aneurysm clips. MATERIALS AND METHODS: Three different MP35N aneurysm clips (Codman Slim-Line Aneurysm Clip, straight, blade length 25-mm; Codman Slim-Line Aneurysm Clip Graft, 5-mm diameter x 5-mm width; Codman Slim-Line Aneurysm Clip, reinforcing 30° angle, 6-mm x 18-mm) that represented the largest mass for 155 additional clips made from MP35N were tested. The clips were evaluated at 3T for magnetic field interactions, heating, and artifacts. We studied MR imaging–related heating, placing the clip in a gelled-saline-filled phantom with MR imaging performed by using a transmit/receive radio-frequency body coil at a whole-body average SAR of 3 W/kg for 15 minutes. Artifacts were characterized by using T1-SE and GRE pulse sequences. RESULTS: Each aneurysm clip showed relatively minor magnetic field interactions, which would not cause movement in situ. Heating was not excessive (highest temperature change, <1.8°C). Artifacts may create problems if the area of interest is in the same area or close to the aneurysm clip. CONCLUSIONS: The results of this investigation demonstrated that it would be acceptable (ie, "MR conditional" using current terminology) for patients with these aneurysm clips to undergo MR imaging at 3T. Notably, on the basis of the sizes of the clips that underwent testing, these findings pertain to 155 additional aneurysm clips made from the same material. Abbreviations: ASTM, American Society for Testing and Materials • GRE, gradient recalled-echo • MP35N, nickel-cobalt-chromium-molybdenum alloy • SAR, specific absorption rate • T1-SE, T1-weighted spin-echo The application of a temporary or permanent vascular clip to manage an intracranial aneurysm or arteriovenous malformation is a common neurosurgical procedure.1,2 While the presence of a ferromagnetic aneurysm clip in an individual is a strict contraindication for an MR imaging procedure,3–8 aneurysm clips classified as "nonferromagnetic" or "weakly ferromagnetic" cause no known MR imaging–related problems.5–17 The clinical use of 3T MR systems continues to grow, with certain advantages reported at 3T compared with lower field strength scanners.18 Biomedical implants pose possible risks and other concerns for patients referred for 3T MR imaging examinations, which include movement or displacement of the device, excessive heating of the object, and substantial artifacts, which may impact the diagnostic use of MR imaging.7,8 Thus, it is necessary to perform in vitro testing at 3T to characterize these MR imaging problems for implants.8,17,19 This investigation assessed MR imaging risks (ie, magnetic field interactions, MR imaging–related heating, and artifacts) at 3T for 3 different aneurysm clips made from MP35N. On the basis of this material and the smaller sizes of other aneurysm clips made from MP35N, the findings of this investigation can be applied to 155 additional clips. Materials and Methods Aneurysm Clips Three different aneurysm clips (Fig 1; Slim-Line Aneurysm Clip, straight, 25-mm blade length; Slim-Line Aneurysm Graft Clip, 5-mm diameter x 5-mm width; and Slim-Line Aneurysm Clip, reinforcing 30° angle, 6-mm x 18-mm; Codman & Shurtleff, a Johnson & Johnson Company, Raynham, Massachusetts) were selected for testing because they represented the largest metallic masses and sizes for 3 different versions of 155 additional aneurysm clips made from the same material, MP35N (On-line Appendix). View larger version (133K): [in this window] [in a new window] Fig 1. The aneurysm clips that underwent testing at 3T (top, Codman Slim-Line Aneurysm Clip, straight, blade length 25-mm; middle, Codman Slim-Line Aneurysm Graft Clip, 5-mm diameter x 5-mm width; bottom, Codman Slim-Line Aneurysm Clip, reinforcing 30° angle, 6-mm x 18-mm. Magnetic Field Interactions Each aneurysm clip was evaluated for translational attraction and torque in association with a 3T MR system (Excite active-shielded, horizontal field scanner, Software G3.0–052B; GE Healthcare, Milwaukee, Wisconsin).17,20–23 Translational Attraction. To evaluate translational attraction for each aneurysm clip, the deflection-angle technique was used according to a previously described methodology.17,20–23 Thus, each aneurysm clip was connected to a test fixture to determine the deflection angle in the 3T MR system. The test fixture incorporated a protractor with 1° graduated markings.17,20–23 The test sample was suspended on the apparatus by a lightweight string (20 cm in length; weight, <1% of the weight of each clip), which was fixed at the 0° indicator of the protractor. Deflection angles for each aneurysm clip were assessed at the point of the highest spatial magnetic gradient for the 3T MR system.17,20–23 The highest spatial magnetic gradient for the 3T scanner used in this investigation is 720 G/cm and occurs at an off-axis position 74-cm from the isocenter.22 The maximum deflection angle from the vertical direction to the nearest 1° was measured 3 times for each aneurysm clip, and an average value was calculated.17,20–23 Torque. Torque for each aneurysm clip in association with exposure to the 3T MR system was determined by using a previously described qualitative assessment technique.20–23 This involved the use of a flat plastic device with a millimeter grid.20–23 Each aneurysm clip was placed on the test apparatus in an orientation that was 45° relative to the static magnetic field of the 3T MR system.20–23 The test apparatus was then positioned in the center of the scanner, where the effect of torque is the greatest. The clip was observed for possible alignment or rotation relative to the 3T static magnetic field. Each aneurysm clip was then moved 45° relative to its previous position and observed for alignment or rotation. This process was repeated to encompass a full 360° rotation of positions for each aneurysm clip. The following qualitative scale was applied to the results20–23: 0, no torque; +1, mild or low torque (the aneurysm clip slightly changed orientation but did not align to the magnetic field); +2, moderate torque (the aneurysm clip aligned gradually to the magnetic field); +3, strong torque (the aneurysm clip showed rapid and forceful alignment to the magnetic field); and +4, very strong torque (the aneurysm clip showed very rapid and very forceful alignment to the magnetic field).20–23 MR Imaging–Related Heating Phantom and Experimental Setup. MR imaging–related heating at 3T/128 MHz was assessed for each aneurysm clip. This procedure used a plastic ASTM head/torso phantom filled to a depth of 10 cm with gelled saline (ie, 0.8 g/L of sodium chloride plus 5.85 g/L of polyacrylic acid in distilled water).20–22,24 Because this phantom and experimental setup lacked "blood flow," it simulated an extreme condition used to assess MR imaging–related heating for the aneurysm clips. Temperature Recording System and Placement of Thermometry Probes. Temperature measurements were obtained by using a fluoroptic thermometry system (Model 3100; LumaSense Technologies, Santa Clara, California). The Fluoroptic thermometry probes (0.5 mm in diameter) were positioned on each aneurysm clip to record representative temperatures as follows: probe 1, the sensor portion of the probe placed in contact with 1 end of the clip; probe 2, the sensor portion of the probe placed in contact with opposite end of the clip; and probe 3, the sensor portion of the probe placed in contact with middle portion of the clip. The positions of the thermometry probes were inspected and verified immediately before and after each MR imaging–related heating experiment. MR Imaging Conditions. MR imaging was performed at 3T/128 MHz (Excite, Software G3.0–052B, GE Healthcare). The body radio-frequency coil was used to transmit and receive radio-frequency energy. MR imaging parameters were selected to generate a relatively high level of radio-frequency energy,20–22 producing an MR imaging system–reported whole-body average SAR of 3.0 W/kg for 15 minutes. The land-marking position (ie, the center position or anatomic region for the MR imaging procedure) and section locations were selected to encompass the entire area of each aneurysm clip. Experimental Protocol. Each aneurysm clip was placed in the ASTM head/torso phantom at a position midline on the left side, slightly (5 mm) below the mid-depth (vertical orientation) of the gelled saline. For this particular 3T/128-MHz MR imaging system and experimental setup, the left side of the ASTM head/torso phantom was found to be associated with a greater temperature rise than the right side of the head/torso phantom for a given implant or device (ie, based on pilot experiments). Therefore, each aneurysm clip was placed on the left side of the ASTM head/torso phantom to yield the worst case temperature rise for the described measurement conditions, based on prior analysis of device heating for this particular MR imaging system (ie, due to asymmetry in heating patterns for this phantom and MR imaging system).25–27 The aneurysm clip was positioned in the plastic phantom using a grid and small plastic posts technique, as previously described.20–22 The Fluoroptic thermometry system was calibrated, and the Fluoroptic thermometry probes were applied. The phantom was filled with the gelled saline and allowed to equilibrate to the environmental temperature for more than 24 hours. The MR imaging system fan was not on during the MR imaging–related heating investigations. The room and MR imaging system bore temperatures were at constant levels throughout each experimental session. After recording baseline temperatures (5 minute), MR imaging was performed for 15 minutes with temperatures recorded at 20-second intervals. This procedure was repeated for the next aneurysm clip after the gelled saline returned to thermoequilibrium, facilitated by manual mixing and verified by recording temperatures at multiple positions in the phantom. The highest temperature changes recorded by the Fluoroptic thermometry probes are reported for each aneurysm clip. With this procedure, the MR imaging–related heating information applies to a "per-pulse sequence" aspect of the MR imaging examination. The background temperature was also recorded in the ASTM head/torso phantom. Thus, the temperature change was recorded at the position in the phantom in association with MR imaging–related heating of the gelled-saline-filled phantom without the clip present. To record the background temperature, we placed a fluoroptic thermometry probe in the ASTM head/torso phantom at a position midline on the left side, slightly (5 mm) below the mid-depth (vertical orientation) of the gelled saline. Artifacts MR imaging artifacts were assessed at 3T for each aneurysm clip. This test was performed by MR imaging with each aneurysm clip attached to a plastic frame and then placed in a gadolinium-doped saline-filled plastic phantom.13,20–22,25 MR imaging was conducted by using a 3T MR system (Excite, Software G3.0–052B, GE Healthcare), a transmit/receive radio-frequency head coil, and the following pulse sequences: 1) T1-SE sequence: TR, 500 ms; TE, 20 ms; matrix size, 256 x 256; section thickness, 10 mm; FOV, 24 cm; NEX, 2; bandwidth, 16 kHz; and 2) GRE pulse sequence: TR, 100 ms; TE, 15 ms; flip angle, 30°; matrix size, 256 x 256; section thickness, 10 mm; FOV, 24 cm; NEX, 2; bandwidth, 16 kHz. The imaging planes were oriented to encompass the long and short axes of each aneurysm clip. The frequency-encoding direction was parallel to the plane of imaging. The image locations obtained through each aneurysm clip represented the largest or worst case artifacts (ie, based on reviewing multiple section locations in each imaging plane for each clip), and these were selected for evaluation. Planimetry software was used to measure (accuracy and resolution ± 10%) the cross-sectional area of the largest artifacts size for each aneurysm clip for each pulse sequence and for each orientation of the section location.20–22 The image display parameters (ie, window and level settings, magnification, etc) were carefully selected and used in a consistent manner to provide valid measurements of sizes for the artifacts.20–22 This methodology has been used in many previous reports involving the characterization of artifacts for metallic implants.20–22 Results The average deflection angles ranged from 4° to 6° for the 3 different aneurysm clips, and the qualitatively measured torque was 0, no torque in each case (Table 1). Findings for the MR imaging–related heating assessments for the aneurysm clips indicated that the highest temperature changes were 1.8°C (range, 1.6°C–1.8°C; Table 2). The background temperature change was 1.6°C. Artifacts test results are presented in Table 3. In general, the artifacts associated with the 3 different aneurysm clips were seen as signal-intensity losses or "voids," which were slightly larger than the size and shape of each clip, with the GRE pulse sequence producing larger artifacts than the T1-SE pulse sequence. Figure 2 shows examples of artifacts for the aneurysm clips, as seen on the gradient pulse sequence in the view oriented to the long axis of the respective clip. View this table: [in this window] [in a new window] Table 1: Summary of magnetic field interactions at 3T for the aneurysm clips View this table: [in this window] [in a new window] Table 2: Summary of MR imaging–related heating at 3T for the aneurysm clips View this table: [in this window] [in a new window] Table 3: Summary of artifacts sizes for the aneurysm clips evaluated at 3T View larger version (44K): [in this window] [in a new window] Fig 2. MR imaging artifacts associated with the 3 different aneurysm clips. A, Codman Slim-Line Aneurysm Clip, straight, 25-mm blade length. B, Codman Slim-Line Aneurysm Clip Graft, 5-mm diameter x 5-mm width; C, Codman Slim-Line Aneurysm Clip, reinforcing 30° angle, 6-mm x 18-mm (GRE pulse sequence; TR/TE, 100/15 ms; flip angle, 30°; matrix size, 256 x 256; section thickness, 10 mm; FOV, 22 cm; long-axis imaging plane). Discussion Magnetic Field Interactions The average deflection angles ranged from 4° to 6° at 3T for the aneurysm clips made from MP35N. This information should be considered in view of the information provided by the ASTM International,23 which states: "If the implant deflects less than 45°, then the magnetically induced deflection force is less than the force on the implant due to gravity (its weight). For this condition, it is assumed that any risk imposed by the application of the magnetically induced force is no greater than any risk imposed by normal daily activity in the Earth's gravitational field." Therefore, the 3 different aneurysm clips that underwent testing passed this acceptance criterion with respect to exposure to the 3T MR system. The qualitatively measured torque was 0, no torque, in each case. Therefore, these aneurysm clips would not present a hazard to a patient in a 3T MR imaging environment with respect to magnetic field interactions. For a metallic implant in the MR imaging environment, the associated magnetic field interactions are dependent on the strength of the static magnetic field, the maximum spatial gradient, the mass of the object, the shape of the object, and the magnetic susceptibility of the materials.5–9,11,16,19 As previously stated, the 3 different aneurysm clips were specifically selected for testing at 3T in this investigation because they represented the largest metallic masses and sizes for 3 different versions of 155 additional aneurysm clips (On-line Appendix) made from MP35N. Therefore, because these additional aneurysm clips have lower masses and dimensions, the magnetic qualities are predicted to be less, with the findings for magnetic field interactions for the 3 clips tested appropriately applied to these implants relative to the 3T MR imaging environment. MR Imaging-Related Heating Using a relatively high level of radio-frequency energy (ie, MR imaging system–reported whole-body average SAR, 3.0 W/kg) at 3T with each aneurysm clip placed in a worst case position in an unperfused phantom yielded maximum temperature changes that ranged from 1.6°C to 1.8°C. Notably, the background temperature change associated with the same experimental conditions was 1.6°C. These recorded temperature increases for the aneurysm clips are not considered to be physiologically consequential for a human subject.30 Excessive MR imaging–related heating can occur in an implant,7,8,19,27,31 but this tends to happen in an object that has a certain length or is in the shape of a closed loop with a relatively large diameter or both.7,8,19,31 For an aneurysm clip, the length and closed loop aspects of the design must be considered because these factors could impact the heating characteristics of this implant. In view of the fact that aneurysm clips are fairly short and have very small closed loops (Fig 1), the associated MR imaging–related heating will not be substantially higher than the background temperature, even during extreme experimental conditions at 3T, as demonstrated by the findings of this investigation. Notably, because the 3 aneurysm clips tested had the largest dimensions (albeit relatively short) compared with those listed in On-line Appendix, the results of the MR imaging–related heating tests will pertain to these other clips, with a presumed lack of excessive temperature rises. Artifacts While many factors are known to affect the size of an artifact observed with a metallic implant, it is well known that for aneurysm clips, the extent of the size is predominantly dependent on the magnetic susceptibility of the material.8–10,13,15,28,29 Therefore, the associated artifacts may affect the diagnostic use of the MR imaging examination if the area of interest is the same as or close to that in the proximity of the aneurysm clip made from MP35N. Optimization of pulse-sequence parameters to minimize artifacts size is, thus, recommended. Conclusions In consideration of the minor magnetic field interactions, the relatively mild heating (ie, above the background temperature when using extreme experimental conditions), and characterization of artifacts, the results of this investigation demonstrated that it would be acceptable (ie, "MR conditional" using current MR imaging–labeling terminology) for patients with these aneurysm clips to undergo MR imaging procedures at 3T or less.32,33 Notably, in consideration of the sizes of the clips that underwent testing, these findings also pertain to 155 additional aneurysm clips made from the same material, MP35N (On-line Appendix).
机译:背景与目的:需要在3T时对动脉瘤夹进行测试,以表征MR成像的问题,包括磁场相互作用,与MR成像相关的加热和伪影。因此,我们评估了动脉瘤夹的这些风险。 材料和方法:三种不同的MP35N动脉瘤夹(Codman Slim-Line Aneurysm Clip,笔直,刀片长度25-mm; Codman Slim-Line动脉瘤 夹钳,直径5mm x 5mm宽度; Codman Slim-Line动脉瘤 夹子,加固30°角,测试了代表 重量最大的155个由MP35N制成的夹子的最大重量(6毫米x 18毫米)。在3T下评估了这些片段的磁场相互作用, 加热和伪影。我们研究了与MR成像相关的 加热,将夹子放置在胶状盐填充的幻影 中,并通过使用发射/接收射频 < / sup>人体线圈的平均SAR为3 W / kg,持续15分钟。 使用T1-SE和GRE脉冲序列对伪像进行了表征。 结果:每个动脉瘤夹均显示相对较小的磁场相互作用, 不会引起原位运动。加热不要过度 (最高温度变化,<1.8°C)。如果感兴趣的区域与动脉瘤夹位于同一区域或靠近动脉瘤夹,则可能会产生伪影。问题结论:本研究结果表明对于具有这些动脉瘤夹的患者在3T接受MR成像 ,这是可以接受的(即,使用当前术语为“ MR有条件的”)。值得注意的是,根据 经过测试的夹子的大小,这些发现与另外155个由相同材料制成的 动脉瘤夹子有关。 缩写:ASTM,美国测试和材料学会•GRE,梯度回波•MP35N,镍钴铬钼合金•SAR,比吸收率•T1-SE,T1加权自旋回波临时应用或永久性血管夹以 处理颅内动脉瘤或动静脉畸形 是一种常见的神经外科手术。 1,2 而 < / sup>个体中的铁磁动脉瘤夹是MR成像程序的严格禁忌 , 3-8 动脉瘤夹被分类为“非铁磁的或“弱铁磁”不会导致与 MR影像相关的已知问题。 5-17 3T MR系统的临床应用持续增长,与某些 与较低的场强扫描仪相比,在3T上具有更多优势。 18 生物医学植入物可能会对3T MR影像学检查的患者带来风险和其他 关注, ,包括设备的移动或移位,物体的过度 加热以及大量伪影,这些伪影可能会影响MR成像的诊断用途。 7,8 因此,有必要 在3T进行体外测试,以表征植入物的这些MR成像 问题。 8, 17,19 该研究评估了MR成像风险(即磁场 相互作用,MR成像相关的加热和伪影) 在3T下用MP35N制成的3种不同的动脉瘤夹。在此材料的 基础上,以及由MP35N制成的较小尺寸的其他动脉瘤 夹子,本研究的结果可以 应用于另外155个 材料和方法动脉瘤夹三种不同的动脉瘤夹(图1; Slim-Line动脉瘤夹, 直的,刀片长度为25 mm; Slim-Line动脉瘤移植夹, 直径5毫米x宽度5毫米;以及Slim-Line动脉瘤夹,加固 30°角,6毫米x 18毫米; Codman&Shurtleff,约翰逊选择了 和Johnson公司(位于马萨诸塞州Raynham)进行测试,因为它们代表了最大的金属质量 和3种不同版本的155个附加动脉瘤的尺寸用相同的材​​料MP35N(在线附录)制成的 剪辑。 查看较大版本(133K):[在此窗口中] [在新窗口中]图1。在3T接受测试的动脉瘤夹(顶部,Codman Slim-Line动脉瘤夹,笔直,b装载长度25-mm;中间,科德曼超薄动脉瘤移植夹,直径5毫米x宽度5毫米;底部,Codman Slim-Line动脉瘤夹,加固30°角,6毫米x 18毫米。磁场相互作用与3T MR系统(Exeite有源屏蔽,水平场扫描仪,软件G3.0–052B)相关联,评估每个动脉瘤夹的平移吸引力 和扭矩; GE Healthcare, 威斯康星州密尔沃基市)。 17,20–23 翻译吸引力。为了评估每个动脉瘤夹的平移吸引力,根据先前的 方法使用了 偏转角技术。 17,20–23 因此,将每个动脉瘤夹 连接到测试夹具,以确定3T MR系统中的偏转 角度。测试夹具装有带有1°刻度标记的量角器 。 17,20–23 测试样品 用轻质的绳子悬挂在设备上(长度为20 cm ;重量,<每个剪辑的重量的1%), 固定在量角器的0°指示器处。在3T MR系统的最高空间磁梯度的 点评估每个动脉瘤夹的偏转 角。 17,20–23 在此研究中使用的3T 扫描仪的最高空间磁梯度为720 G / cm,发生在距等角点74-cm的离轴位置。 22 对于每个动脉瘤夹,测量3次从垂直方向到最近的 1°的最大 偏转角,并平均 17,20–23 扭矩。使用先前描述的 定性评估技术确定每个动脉瘤夹与暴露于 3T MR系统相关的扭矩。 20-23 涉及 使用带有毫米网格的扁平塑料装置。 20-23 每个动脉瘤夹以 的方向放置在测试设备上相对于3T MR系统的静磁场 倾斜45°。 20–23 将测试设备 然后放置在扫描器,其中扭矩效果 最大。观察夹子相对于3T静磁场的可能 对齐或旋转。 然后将每个动脉瘤夹子相对于其先前的 移动45°位置并观察对准或旋转。重复此过程 以包含每个动脉瘤夹的位置 的完整360°旋转。在 20-23 结果中使用了以下定性量表:<0,无转矩; 0,无转矩; 0,无转矩。 +1,轻微或 的低扭矩(动脉瘤夹的方向略有变化,但 没有与磁场对齐); +2,中等扭矩( 动脉瘤夹逐渐对准磁场); +3, 强扭力(动脉瘤夹显示与磁场快速且有力的对齐 );和+4,非常强的扭矩(动脉瘤夹 显示与磁场 的对齐非常迅速且非常有力)。 20–23 MR成像相关的加热体模和实验装置。对于每个动脉瘤夹,评估了3T / 128 MHz时与MR成像相关的加热 。该程序使用塑料ASTM头部/躯干 幻像填充了10厘米深的胶凝盐水(即0.8 g / L的氯化钠和5.85 g / L的氯化钠)。 蒸馏水中的聚丙烯酸)。 20–22,24 因为此幻像和实验性 设置缺少“血流”,因此它模拟了极端情况 用于评估MR成像相关的动脉瘤 夹的加热。 温度记录系统和测温探头的放置。温度测量是通过使用荧光热成像系统(Model 3100; LumaSense Technologies,Santa Clara,California)获得的。将荧光测温探头(直径为0.5 mm )放置在每个动脉瘤夹上,以记录 代表温度,如下所示:探头1,传感器 部分探针与夹子的一端接触的位置; 探针2,探针的传感器部分与夹子的相对端接触的位置;探头3, 的传感器部分与夹子的中间部分接触。 检查并验证了测温探头的位置 在每次与MR成像相关的加热 实验前后。 MR成像条件。 MR成像在3T / 128 MHz(Excite,软件G3.0–052B, GE Healthcare)进行。人体射频线圈用于传输 和接收射频能量。选择 MR成像参数以生成相对较高水平的射频 能量, 20-22 产生MR成像系统-报告的 15分钟的全身平均SAR为3.0 W / kg。地标 位置(即,选择 MR成像程序的中心位置或解剖区域)和切片位置以 涵盖每个动脉瘤夹的整个区域。 实验协议。将每个动脉瘤夹放置在ASTM头部/躯干体模 中左侧的中线位置,位于 的中间深度(垂直方向)下方(5毫米)处。胶状的盐水。对于 这种特殊的3T / 128-MHz MR成像系统和实验性 设置,发现ASTM头部/躯干体模的左侧为 对于给定的植入物或设备 ,该温度升高的幅度大于头部/躯干体模的右侧 的幅度(例如,基于先导实验)。因此,将每个动脉瘤夹 放置在ASTM头部/躯干体模的左侧,以使 对于所描述的测量 产生最坏的情况。条件,基于对该 特殊MR成像系统的设备加热的先前分析(即,由于此幻影和MR成像系统的加热 模式的不对称性)。 25–27 如前所述,使用 网格和小塑料柱技术将动脉瘤夹放置在塑料体模中。 20-22 / sup>校准了荧光测温系统, 并应用了荧光测温探头。幻影 充满了胶凝的盐水,并使 平衡到环境温度超过24小时。在与MR成像相关的 加热调查期间, MR成像系统风扇未打开。在每个实验 过程中,房间和MR成像系统的孔 温度均处于恒定水平。记录基线温度(5分钟)后,以20秒的间隔记录 的温度进行MR 成像15分钟。在胶凝盐溶液回到热平衡后,对 下一个动脉瘤夹重复此过程, 通过手动混合促进并通过记录多个位置的温度 进行验证在幻影中。报告了每个动脉瘤夹的 荧光光学测温探针记录的最高温度 变化。通过此过程,与MR成像相关的 加热信息适用于MR成像检查的“每个脉冲序列”方面 背景温度还记录在ASTM head / torso 幻像中。因此,温度变化被记录在体模中的 位置,与不带夹子的凝胶成像盐水模体的MR成像相关的 加热相关。 / sup>存在。为了记录背景温度,我们在ASTM头部/躯干体模中的左侧中线 的中间位置略微(5毫米)处放置了一个荧光探针 温度计深度 (垂直方向)。 伪像在每个动脉瘤夹的3T处评估MR成像伪像。 将每个动脉瘤夹 附加到塑料框架上,然后将其放置在掺s的 盐水填充的塑料体模中进行MR成像。 13,20–22,25 < / sup>通过使用3T MR系统(Excite,软件G3.0–052B, GE Healthcare)进行MR成像,该系统是发射/接收射频头线圈, 和以下脉冲序列:1)T1-SE序列:TR,500 ms; TE,20毫秒;矩阵尺寸256 x 256;截面厚度10 mm; FOV,24厘米; NEX,2;带宽16 kHz;和2)GRE脉冲 序列:TR,100毫秒; TE,15毫秒;翻转角30°矩阵 大小,256 x 256;截面厚度,10毫米; FOV,24厘米; NEX, 2;带宽为16 kHz。 成像平面的方向包含每个动脉瘤夹的长和短 轴。频率编码方向 与成像平面平行。通过每个动脉瘤夹 获得的图像位置代表最大或最坏 情况下的伪影(即,基于检查每个成像平面中的多个切片位置 每个剪辑),然后选择 进行评估。使用平面测量软件来测量(精度 和分辨率±10%)每个脉冲 每个动脉瘤夹的最大假象尺寸的横截面积sup>序列和切片位置的每个方向。 20–22 图像显示参数(即,窗口和水平 设置,放大倍数),等等)经过仔细选择,并以一致的方式使用 为工件提供有效的尺寸测量值 。 20-22 在以前的许多涉及金属植入物的伪影 表征的报告中使用。 20–22 结果平均偏转角对于3种不同的动脉瘤夹,其范围从4°至6°,定性测量的 扭矩为0,每种情况下均无扭矩(表1)。 MR成像相关的动脉瘤加热评估的发现表明最高温度变化为1.8°C (范围1.6°C –1.8°C;表2)。 的背景温度变化为1.6°C。表3中列出了伪像测试结果。通常,与 3种不同的动脉瘤夹相关的伪像被视为信号强度 损耗或“空隙”,其大小略大于每个剪辑的大小和形状,并且GRE脉冲序列产生的伪像比T1-SE脉冲序列大。图2显示了 动脉瘤夹的假象示例,如在分别指向长轴 的视图中的 梯度脉冲序列上所见 剪辑:查看此表:[在此窗口中] [在新窗口中]表1:3T动脉瘤剪辑的磁场相互作用摘要查看此表:[在此窗口中] [在一个窗口中新窗口]表2:动脉瘤夹在3T时与MR成像相关的加热摘要查看此表:[在此窗口中] [在新窗口中]表3:在3T下评估的动脉瘤夹的伪影大小摘要放大版本(44K):[在此窗口中] [在新窗口中]图2.与3种不同的动脉瘤夹相关的MR成像伪影。 A,Codman超细线动脉瘤夹,笔直,刀片长度为25 mm。 B,科德曼超薄线动脉夹固定片,直径5毫米x宽度5毫米; C,Codman Slim-Line动脉瘤夹,增强30°角,6mm x 18mm(GRE脉冲序列; TR / TE,100/15 ms;翻转角,30°;矩阵尺寸,256 x 256;截面厚度,10毫米; FOV,22厘米;长轴成像平面)。讨论磁场相互作用对于MP35N制成的动脉瘤夹,在 3T时,平均偏转角范围为4°至6°。应当参考 ASTM International 23 提供的信息考虑该信息 ,该信息指出:“如果植入物偏离了 < / sup>小于45°,则磁感应偏转力 小于重力引起的植入物力( 重量)。假定通过施加磁力产生的任何 风险不大于在地球的 引力场中正常日常活动所施加的任何风险 。”因此,接受测试的3个不同的动脉瘤夹 通过了此接受标准,并且 表示要暴露于3T MR系统。定性测量的 扭矩分别为0,无扭矩。因此,在3T MR成像 环境中,相对于磁场相互作用,这些动脉瘤 不会对患者造成危害。 对于金属植入MR成像环境中,相关的 磁场相互作用取决于 的强度,静态磁场,最大空间梯度, 对象的质量,对象的形状和材料的磁 磁化率。 5–9,11,16,19 和以前的 指出,在此研究中,特地选择了3种不同的动脉瘤夹 进行3T测试,因为它们代表了3种不同版本的最大金属质量和大小 MP35N制成的155个动脉瘤剪辑(在线附录)中的sup>。因此,由于这些附加的动脉瘤夹的质量和尺寸较小,因此可以预测 的磁质量较小,并且发现磁场相互作用的结果 相对于3T MR成像环境,适用于这些植入物的3个测试夹子的 MR成像相关的加热使用相对较高的射频能量(即, MR成像系统–报告了3T时的全身平均SAR,3.0 W / kg),每个动脉瘤夹位于最坏的位置 未灌注的体模产生的最大温度变化 范围为1.6°C至1.8°C。值得注意的是,与相同实验条件 相关的背景 温度变化为1.6°C。这些 动脉瘤夹记录的温度升高对于人类受试者而言不认为是生理上相应的 。 30 过度MR成像相关的加热可能发生在植入物中, 7,8,19,27,31 ,但这往往发生在具有 一定长度或位于 或直径较大的闭环的形状。 7,8,19,31 对于动脉瘤 夹子,其长度和必须考虑设计的闭环方面,因为这些因素可能会影响该植入物的加热特性。 鉴于动脉瘤 夹非常短且闭环非常小(图1),因此与MR成像相关的加热不会 这项研究的结果证明,在3T的极端实验条件下,甚至 背景温度。值得注意的是,由于测试的 3个动脉瘤夹与在线附录中列出的相比具有最大的尺寸(尽管相对地 较短),因此结果 MR成像相关的加热测试中的 将与这些其他剪辑有关,假定没有过度的温度 上升。 工件尽管有许多因素,已知会影响用金属植入物观察到的假象 的大小,众所周知,对于 动脉瘤夹,大小范围主要取决于 因此,相关的伪影可能会影响 MR成像检查的诊断使用如果 感兴趣的区域与由MP35N制成的动脉瘤夹附近的区域相同或接近。因此,建议优化脉冲序列 参数以最小化伪影的大小。 结论考虑到较小的磁场相互作用, 相对温和加热(即使用极端实验条件时高于背景温度 )以及对伪像的表征 ,此研究的结果表明 具有这些 动脉瘤夹的患者在3T或更小的时间接受MR成像程序是可以接受的(即,使用当前的 MR成像标记术语的“ MR条件”)。 32,33 值得注意的是,考虑到 经过测试的夹子的尺寸,这些发现还涉及另外155个由相同材料制成的 动脉瘤夹子, MP35N(在线附录)。

著录项

  • 来源
    《American Journal of Neuroradiology》 |2010年第4期|615-619|共5页
  • 作者

    F.G. Shellock; S. Valencerina;

  • 作者单位

    From Keck School of Medicine (F.G.S.), University of Southern California and Institute for Magnetic Resonance Safety, Education, and Research, Los Angeles, California;

    University of Southern California (S.V.), University Hospital, Los Angeles, California.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号