...
首页> 外文期刊>Advanced Optical Materials >Global Inverse Design across Multiple Photonic Structure Classes Using Generative Deep Learning
【24h】

Global Inverse Design across Multiple Photonic Structure Classes Using Generative Deep Learning

机译:使用生成深度学习的多个光子结构类的全球逆设计

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding how nano- or micro-scale structures and material properties can be optimally configured to attain specific functionalities remains a fundamental challenge. Photonic metasurfaces, for instance, can be spectrally tuned through material choice and structural geometry to achieve unique optical responses. However, existing numerical design methods require prior identification of specific material-structure combinations, or device classes, as the starting point for optimization. As such, a unified solution that simultaneously optimizes across materials and geometries has yet to be realized. To overcome these challenges, a global deep learning-based inverse design framework is presented, where a conditional deep convolutional generative adversarial network is trained on colored images encoded with a range of material and structural parameters, including refractive index, plasma frequency, and geometric design. It is demonstrated that, in response to target absorption spectra, the network can identify an effective metasurface in terms of its class, materials properties, and overall shape. Furthermore, the model can arrive at multiple design variants with distinct materials and structures that present nearly identical absorption spectra. The proposed framework is thus an important step towards global photonics and materials design strategies that can identify combinations of device categories, material properties, and geometric parameters which algorithmically deliver a sought functionality.
机译:了解纳米或微尺度结构和材料特性如何最佳地配置成如何获得特定功能仍然是一个根本的挑战。例如,光子元件可以通过材料选择和结构几何来谱接调整,以实现独特的光学响应。然而,现有的数值设计方法需要先前识别特定的材料结构组合或设备类,作为优化的起点。因此,尚未实现同时优化材料和几何形状的统一解决方案。为了克服这些挑战,提出了一种全球深度学习的逆设计框架,其中有条件的深度卷积生成对抗网络在编码的彩色图像上培训,这些彩色图像编码,包括一系列材料和结构参数,包括折射率,等离子体频率和几何设计。据证明,响应于目标吸收光谱,网络可以根据其类,材料特性和整体形状识别有效的元表面。此外,该模型可以以多种设计变体到达,其具有呈现几乎相同吸收光谱的不同材料和结构。因此,拟议的框架是全球光子和材料设计策略的重要一步,可以识别算法提供寻求功能的设备类别,材料特性和几何参数的组合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号