...
首页> 外文期刊>Advanced Materials >TiO_2 Inverse Opals Fabricated Using Low-Temperature Atomic Layer Deposition
【24h】

TiO_2 Inverse Opals Fabricated Using Low-Temperature Atomic Layer Deposition

机译:低温原子层沉积法制备TiO_2反蛋白石

获取原文
获取原文并翻译 | 示例
           

摘要

We report the low-temperature fabrication of TiO_2 inverse shell opals using ALD. Self-assembled 200 to 440 nm sized silica opals were infiltrated using conventional precursors at 100 ℃, annealed for 2 h at 400 ℃, and inverted using HE The shifts in the Γ-L PBG position and width were confirmed by specular reflectance and transmission spectros-copy, revealing behavior consistent with photonic-band calculations. The peak positions indicate that filling terminated at ~88% of the pore volume, as estimated from the modified Bragg equation, supporting the theoretical prediction that maximum filling for a shell opal is 86%. SEM and AFM analysis revealed ultra-smooth (RMS roughness of < 0.5 nm), highly conformal anatase films as a result of the combination of low-temperature deposition with a short heat treatment. In addition, precise infiltration control (< 1 nm) was achieved with this technique, making the fine-tuning of photonic crystal properties a reality. The success of this work shows that precisely controlling the placement of dielectric materials is possible using ALD, enabling the fabrication of many of the "optimized" structures that have been predicted to have the best optical properties. The digital nature of ALD growth has been demonstrated to allow angstrom-scale fine-tuning of complex structures, and since it can be used to deposit metals, insulators, and semiconductors, many different structures can be fabricated.
机译:我们报告了使用ALD的TiO_2反向壳蛋白石的低温制备。使用常规前体在100℃渗透自组装的200至440 nm尺寸的二氧化硅蛋白石,在400℃退火2 h,然后使用HE翻转。镜面反射率和透射光谱证实了Γ-LPBG位置和宽度的变化。复制,揭示与光子带计算一致的行为。峰值位置表明,根据改良的Bragg方程估算,填充在孔体积的约88%处终止,支持理论上的预测,贝壳蛋白石的最大填充为86%。 SEM和AFM分析表明,低温沉积与短时热处理相结合,可形成超光滑(RMS粗糙度<0.5 nm),高度保形的锐钛矿薄膜。此外,使用此技术可实现精确的渗透控制(<1 nm),从而使光子晶体特性的微调成为现实。这项工作的成功表明,使用ALD可以精确控制介电材料的放置,从而可以制造出许多具有最佳光学性能的“优化”结构。 ALD生长的数字特性已被证明可以对复杂结构进行埃级微调,并且由于可以用于沉积金属,绝缘体和半导体,因此可以制造许多不同的结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号