...
首页> 外文期刊>Advanced energy materials >High-Efficiency Polymer Solar Cells Achieved by Doping Plasmonic Metallic Nanoparticles into Dual Charge Selecting Interfacial Layers to Enhance Light Trapping
【24h】

High-Efficiency Polymer Solar Cells Achieved by Doping Plasmonic Metallic Nanoparticles into Dual Charge Selecting Interfacial Layers to Enhance Light Trapping

机译:通过将等离子金属纳米粒子掺杂到双电荷选择界面层中以增强光陷阱来实现的高效聚合物太阳能电池

获取原文
获取原文并翻译 | 示例
           

摘要

Significantly increased power conversion efficiency (PCE) of polymer solar cells (PSCs) is achieved by applying a plasmonic enhanced light trapping strategy to a low bandgap conjugated polymer, poly(indacenodithiophene-co-phananthrene-quinoxaline) (PIDT-PhanQ) and [6,6]-phenyl-C_(71)-butyric acid methyl ester (PC_(71)BM) based bulk-heterojunction (BHJ) system. By doping both the rear and front charge-selecting interfacial layers of the device with different sizes of Au NPs, the PCE of the devices is improved from 6.65% to 7.50% (13% enhancement). A detailed study of processing, characterization, microscopy, and device fabrication is conducted to understand the underlying mechanism for the enhanced device performance. The success of this work provides a simple and generally applicable approach to enhance light harnessing of low bandgap polymers in PSCs.
机译:聚合物太阳能电池(PSC)的功率转换效率(PCE)显着提高,是通过将等离子体增强的光捕获策略应用于低带隙共轭聚合物聚(茚并二噻吩并噻吩-菲-喹喔啉)(PIDT-PhanQ)和[6 ,6]-苯基-C_(71)-丁酸甲酯(PC_(71)BM)为基础的本体-异质结(BHJ)系统。通过用不同尺寸的Au NPs掺杂器件的背面和正面电荷选择界面层,器件的PCE从6.65%提高到7.50%(提高了13%)。进行了对处理,表征,显微镜和器件制造的详细研究,以了解增强器件性能的基本机制。这项工作的成功提供了一种简单且普遍适用的方法来增强PSC中低带隙聚合物的光利用能力。

著录项

  • 来源
    《Advanced energy materials》 |2013年第5期|666-673|共8页
  • 作者单位

    Department of Materials Science & Engineering University of Washington Seattle, WA 98195, USA,State Key Laboratory of Silicon Materials MOE Key Laboratory of Macromolecule Synthesis and Functionalization Zhejiang-California International Nanosystems Institute Zhejiang University Hangzhou 310027, P. R.China;

    Department of Materials Science & Engineering University of Washington Seattle, WA 98195, USA,Department of Chemical Engineering and Institute of Polymer Science and Engineering National Taiwan University Taipei 106, Taiwan;

    Department of Materials Science & Engineering University of Washington Seattle, WA 98195, USA;

    Department of Materials Science & Engineering University of Washington Seattle, WA 98195, USA;

    State Key Laboratory of Silicon Materials MOE Key Laboratory of Macromolecule Synthesis and Functionalization Zhejiang-California International Nanosystems Institute Zhejiang University Hangzhou 310027, P. R.China;

    State Key Laboratory of Silicon Materials MOE Key Laboratory of Macromolecule Synthesis and Functionalization Zhejiang-California International Nanosystems Institute Zhejiang University Hangzhou 310027, P. R.China;

    Department of Chemical Engineering and Institute of Polymer Science and Engineering National Taiwan University Taipei 106, Taiwan;

    Department of Materials Science & Engineering University of Washington Seattle, WA 98195, USA,State Key Laboratory of Silicon Materials MOE Key Laboratory of Macromolecule Synthesis and Functionalization Zhejiang-California International Nanosystems Institute Zhejiang University Hangzhou 310027, P. R.China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号