首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >On the use of programmable hardware and reduced numerical precision in earth‐system modeling
【2h】

On the use of programmable hardware and reduced numerical precision in earth‐system modeling

机译:关于在地球系统建模中使用可编程硬件并降低数值精度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Programmable hardware, in particular Field Programmable Gate Arrays (FPGAs), promises a significant increase in computational performance for simulations in geophysical fluid dynamics compared with CPUs of similar power consumption. FPGAs allow adjusting the representation of floating‐point numbers to specific application needs. We analyze the performance‐precision trade‐off on FPGA hardware for the two‐scale Lorenz '95 model. We scale the size of this toy model to that of a high‐performance computing application in order to make meaningful performance tests. We identify the minimal level of precision at which changes in model results are not significant compared with a maximal precision version of the model and find that this level is very similar for cases where the model is integrated for very short or long intervals. It is therefore a useful approach to investigate model errors due to rounding errors for very short simulations (e.g., 50 time steps) to obtain a range for the level of precision that can be used in expensive long‐term simulations. We also show that an approach to reduce precision with increasing forecast time, when model errors are already accumulated, is very promising. We show that a speed‐up of 1.9 times is possible in comparison to FPGA simulations in single precision if precision is reduced with no strong change in model error. The single‐precision FPGA setup shows a speed‐up of 2.8 times in comparison to our model implementation on two 6‐core CPUs for large model setups.
机译:可编程硬件,特别是现场可编程门阵列(FPGA),与类似功耗的CPU相比,有望大大提高地球物理流体动力学模拟的计算性能。 FPGA允许根据特定的应用需求调整浮点数的表示形式。我们分析了两级Lorenz '95模​​型在FPGA硬件上的性能精度折衷。我们将此玩具模型的大小缩放到高性能计算应用程序的大小,以便进行有意义的性能测试。我们确定了与模型的最大精度版本相比,模型结果变化不显着的最小精度级别,并且发现该级别对于模型集成非常短或长间隔的情况非常相似。因此,对于在非常短的仿真中(例如50个时间步长)研究由于舍入误差而导致的模型误差,这是一种有用的方法,可以获取可以在昂贵的长期仿真中使用的精度水平范围。我们还表明,当模型误差已经累积时,通过增加预测时间来降低精度的方法非常有前途。我们证明,如果精度降低而模型误差没有很大变化,则单精度下的FPGA仿真速度可提高1.9倍。与我们在大型模型设置的两个6核CPU上的模型实现相比,单精度FPGA设置显示的速度提高了2.8倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号