首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Process intensification for O2‐dependent enzymatic transformations in continuous single‐phase pressurized flow
【2h】

Process intensification for O2‐dependent enzymatic transformations in continuous single‐phase pressurized flow

机译:连续单相加压流中依赖O2的酶促转化的过程强化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Oxidative O2‐dependent biotransformations are promising for chemical synthesis, but their development to an efficiency required in fine chemical manufacturing has proven difficult. General problem for process engineering of these systems is that thermodynamic and kinetic limitations on supplying O2 to the enzymatic reaction combine to create a complex bottleneck on conversion efficiency. We show here that continuous‐flow microreactor technology offers a comprehensive solution. It does so by expanding the process window to the medium pressure range (here, ≤34 bar) and thus enables biotransformations to be conducted in a single liquid phase at boosted concentrations of the dissolved O2 (here, up to 43 mM). We take reactions of glucose oxidase and d‐amino acid oxidase as exemplary cases to demonstrate that the pressurized microreactor presents a powerful engineering tool uniquely apt to overcome restrictions inherent to the individual O2‐dependent transformation considered. Using soluble enzymes in liquid flow, we show reaction rate enhancement (up to six‐fold) due to the effect of elevated O2 concentrations on the oxidase kinetics. When additional catalase was used to recycle dissolved O2 from the H2O2 released in the oxidase reaction, product formation was doubled compared to the O2 supplied, in the absence of transfer from a gas phase. A packed‐bed reactor containing oxidase and catalase coimmobilized on porous beads was implemented to demonstrate catalyst recyclability and operational stability during continuous high‐pressure conversion. Product concentrations of up to 80 mM were obtained at low residence times (1–4 min). Up to 360 reactor cycles were performed at constant product release and near‐theoretical utilization of the O2 supplied. Therefore, we show that the pressurized microreactor is practical embodiment of a general reaction‐engineering concept for process intensification in enzymatic conversions requiring O2 as the cosubstrate.
机译:依赖于O2的氧化生物转化有望用于化学合成,但是事实证明,将其发展为精细化学生产所需的效率是困难的。这些系统的工艺工程的普遍问题是,在向酶促反应供应氧气方面,热力学和动力学的局限性结合在一起,造成了转化效率的复杂瓶颈。我们在这里展示了连续流微反应器技术提供了全面的解决方案。它通过将处理窗口扩展到中压范围(此处≤34bar)来实现,因此可以在单一液相中以提高的溶解氧浓度(此处达到43μmM)进行生物转化。我们以葡萄糖氧化酶和d-氨基酸氧化酶的反应为例,来证明加压微反应器提供了一种强大的工程工具,该工程工具独特地易于克服所考虑的依赖于O2的单个转化所固有的限制。在液流中使用可溶性酶时,由于氧气浓度升高对氧化酶动力学的影响,我们显示出反应速率提高(最高六倍)。当使用额外的过氧化氢酶从氧化酶反应中释放的H2O2中回收溶解的O2时,在没有从气相转移的情况下,与所供应的O2相比,产物形成增加了一倍。实施了将氧化酶和过氧化氢酶固定在多孔珠粒上的填充床反应器,以证明在连续高压转化过程中催化剂的可回收性和操作稳定性。在低停留时间(1-4分钟)下获得的产品浓度高达80µmM。在恒定的产品释放和所供应氧气的接近理论利用率的情况下,最多可进行360个反应器循环。因此,我们表明加压微反应器是一般反应工程概念的实际实施方案,用于在需要O2作为共底物的酶促转化中进行工艺强化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号