首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Systematic Experimental Study on Quantum Sieving of Hydrogen Isotopes in Metal‐Amide‐Imidazolate Frameworks with narrow 1‐D Channels
【2h】

Systematic Experimental Study on Quantum Sieving of Hydrogen Isotopes in Metal‐Amide‐Imidazolate Frameworks with narrow 1‐D Channels

机译:一维通道狭窄的金属-氨基-咪唑啉骨架中氢同位素的量子筛分系统实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quantum sieving of hydrogen isotopes is experimentally studied in isostructural hexagonal metal‐organic frameworks having 1‐D channels, named IFP‐1, −3, −4 and −7. Inside the channels, different molecules or atoms restrict the channel diameter periodically with apertures larger (4.2 Å for IFP‐1, 3.1 Å for IFP‐3) and smaller (2.1 Å for IFP‐7, 1.7 Å for IFP‐4) than the kinetic diameter of hydrogen isotopes. From a geometrical point of view, no gas should penetrate into IFP‐7 and IFP‐4, but due to the thermally induced flexibility, so‐called gate‐opening effect of the apertures, penetration becomes possible with increasing temperature. Thermal desorption spectroscopy (TDS) measurements with pure H2 or D2 have been applied to study isotope adsorption. Further TDS experiments after exposure to an equimolar H2/D2 mixture allow to determine directly the selectivity of isotope separation by quantum sieving. IFP‐7 shows a very low selectivity not higher than S=2. The selectivity of the materials with the smallest pore aperture IFP‐4 has a constant value of S≈2 for different exposure times and pressures, which can be explained by the 1‐D channel structure. Due to the relatively small cavities between the apertures of IFP‐4 and IFP‐7, molecules in the channels cannot pass each other, which leads to a single‐file filling. Therefore, no time dependence is observed, since the quantum sieving effect occurs only at the outermost pore aperture, resulting in a low separation selectivity.
机译:在具有一维通道的同构六角形金属有机框架中,对氢同位素的量子筛分进行了实验研究,这些通道称为IFP-1,-3,-4和-7。在通道内部,不同的分子或原子会周期性地限制通道直径,其孔径比孔径大(IFP-1为4.2?Å,IFP-3为3.1?Å)和较小(IFP-7为2.1?Å,IFP-4为1.7Å)。氢同位素的动力学直径。从几何角度来看,任何气体都不能渗入IFP-7和IFP-4,但是由于热诱导的柔韧性,即所谓的开孔开口效应,随着温度的升高,有可能渗入。用纯H2或D2进行的热解吸光谱(TDS)测量已用于研究同位素吸附。暴露于等摩尔H2 / D2混合物后的进一步TDS实验可直接确定通过量子筛分分离同位素的选择性。 IFP-7的选择性很低,不高于S = 2。对于不同的暴露时间和压力,具有最小孔径IFP-4的材料的选择性具有恒定的S≈​​2,这可以通过一维通道结构来解释。由于IFP-4和IFP-7的孔之间的空腔相对较小,通道中的分子无法彼此通过,从而导致单行填充。因此,没有观察到时间依赖性,因为量子筛分作用仅在最外侧的孔口处发生,导致较低的分离选择性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号