首页> 美国卫生研究院文献>Springer Open Choice >Nanomechanics of β-rich proteins related to neuronal disorders studied by AFM all-atom and coarse-grained MD methods
【2h】

Nanomechanics of β-rich proteins related to neuronal disorders studied by AFM all-atom and coarse-grained MD methods

机译:通过AFM全原子和粗粒度MD方法研究与神经元疾病相关的富含β的蛋白质的纳米力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computer simulations of protein unfolding substantially help to interpret force-extension curves measured in single-molecule atomic force microscope (AFM) experiments. Standard all-atom (AA) molecular dynamics simulations (MD) give a good qualitative mechanical unfolding picture but predict values too large for the maximum AFM forces with the common pulling speeds adopted here. Fine tuned coarse-grain MD computations (CG MD) offer quantitative agreement with experimental forces. In this paper we address an important methodological aspect of MD modeling, namely the impact of numerical noise generated by random assignments of bead velocities on maximum forces (Fmax) calculated within the CG MD approach. Distributions of CG forces from 2000 MD runs for several model proteins rich in β structures and having folds with increasing complexity are presented. It is shown that Fmax have nearly Gaussian distributions and that values of Fmax for each of those β-structures may vary from 93.2 ± 28.9 pN (neurexin) to 198.3 ± 25.2 pN (fibronectin). The CG unfolding spectra are compared with AA steered MD data and with results of our AFM experiments for modules present in contactin, fibronectin and neurexin. The stability of these proteins is critical for the proper functioning of neuronal synaptic clefts. Our results confirm that CG modeling of a single molecule unfolding is a good auxiliary tool in nanomechanics but large sets of data have to be collected before reliable comparisons of protein mechanical stabilities are made.>FigureComputational strechnings of single protein modeules leads to broad distributions of unfolding forces
机译:蛋白质展开的计算机模拟实质上有助于解释在单分子原子力显微镜(AFM)实验中测得的力-延伸曲线。标准的全原子(AA)分子动力学模拟(MD)给出了良好的定性机械展开图,但对于此处采用的常用牵引速度,对于最大AFM力而言,预测值太大。微调的粗粒度MD计算(CG MD)提供了与实验力的定量一致性。在本文中,我们讨论了MD建模的重要方法论方面,即,通过随机分配磁珠速度产生的数值噪声对CG MD方法中计算的最大力(Fmax)的影响。提出了2000 MD的CG力分布,这些模型运行了几种模型蛋白,这些模型蛋白富含β结构并且具有随着复杂性增加的折叠。结果表明Fmax几乎具有高斯分布,并且每个β结构的Fmax值可能在93.2±28.9 pN(神经毒素)至198.3±25.2 pN(纤连蛋白)之间变化。将CG展开光谱与AA控制的MD数据以及我们在接触素,纤连蛋白和神经毒素中存在的模块的AFM实验结果进行比较。这些蛋白质的稳定性对于神经元突触裂的正常运作至关重要。我们的结果证实,单分子展开的CG模型在纳米力学中是一个很好的辅助工具,但是在进行可靠的蛋白质机械稳定性比较之前必须收集大量数据。<!-fig ft0-> <!-无花果@ position =“ anchor” mode = article f4-> <!-fig mode =“ anchored” f5-> > Figure <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> <!-标题a7->单个蛋白质模块的计算拉伸导致展开力的广泛分布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号