首页> 美国卫生研究院文献>PLoS Computational Biology >A method to quantify mechanobiologic forces during zebrafish cardiac development using 4-D light sheet imaging and computational modeling
【2h】

A method to quantify mechanobiologic forces during zebrafish cardiac development using 4-D light sheet imaging and computational modeling

机译:一种使用4-D光线片成像和计算模型量化斑马鱼心脏发育过程中力学力的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Blood flow and mechanical forces in the ventricle are implicated in cardiac development and trabeculation. However, the mechanisms of mechanotransduction remain elusive. This is due in part to the challenges associated with accurately quantifying mechanical forces in the developing heart. We present a novel computational framework to simulate cardiac hemodynamics in developing zebrafish embryos by coupling 4-D light sheet imaging with a stabilized finite element flow solver, and extract time-dependent mechanical stimuli data. We employ deformable image registration methods to segment the motion of the ventricle from high resolution 4-D light sheet image data. This results in a robust and efficient workflow, as segmentation need only be performed at one cardiac phase, while wall position in the other cardiac phases is found by image registration. Ventricular hemodynamics are then quantified by numerically solving the Navier-Stokes equations in the moving wall domain with our validated flow solver. We demonstrate the applicability of the workflow in wild type zebrafish and three treated fish types that disrupt trabeculation: (a) chemical treatment using AG1478, an ErbB2 signaling inhibitor that inhibits proliferation and differentiation of cardiac trabeculation; (b) injection of gata1a morpholino oligomer (gata1aMO) suppressing hematopoiesis and resulting in attenuated trabeculation; (c) weak-atriumm58 mutant (wea) with inhibited atrial contraction leading to a highly undeveloped ventricle and poor cardiac function. Our simulations reveal elevated wall shear stress (WSS) in wild type and AG1478 compared to gata1aMO and wea. High oscillatory shear index (OSI) in the grooves between trabeculae, compared to lower values on the ridges, in the wild type suggest oscillatory forces as a possible regulatory mechanism of cardiac trabeculation development. The framework has broad applicability for future cardiac developmental studies focused on quantitatively investigating the role of hemodynamic forces and mechanotransduction during morphogenesis.
机译:心室中的血流和机械力与心脏发育和小梁牵连。但是,机械转导的机制仍然难以捉摸。这部分是由于与准确量化心脏发育中的机械力有关的挑战。我们提出了一种新型的计算框架,可以通过将4-D光线片成像与稳定的有限元流求解器耦合,来模拟斑马鱼胚胎发育中的心脏血液动力学,并提取时间相关的机械刺激数据。我们采用可变形的图像配准方法,以从高分辨率的4-D光线片图像数据中分割出心室的运动。这导致了强大而有效的工作流程,因为分割仅需要在一个心脏阶段执行,而其他心脏阶段的壁位置通过图像配准找到。然后通过使用我们经过验证的流量求解器在移动壁域中对Navier-Stokes方程进行数值求解来量化心室血流动力学。我们证明了该工作流程在野生型斑马鱼和三种破坏小梁的经处理鱼类中的适用性:(a)使用AG1478(一种抑制心脏小梁的增殖和分化的ErbB2信号抑制剂)进行化学处理; (b)注射gata1a吗啉代寡聚物(gata1aMO),抑制造血作用并导致小梁减弱; (c)心房收缩受抑制的弱心房 m58 突变体(wea),导致高度不发达的心室和不良的心功能。我们的模拟显示,与gata1aMO和wea相比,野生型和AG1478中的壁切应力(WSS)升高。在野生型中,小梁之间的凹槽中的高振荡剪切指数(OSI)与脊上较低的值相比,表明振荡力是心脏小梁发展的一种可能的调节机制。该框架对于未来的心脏发育研究具有广泛的适用性,该研究集中于定量研究形态发生过程中血液动力和机械传导的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号