首页> 美国卫生研究院文献>Frontiers in Neuroscience >Neuronal Circuit-Based Computer Modeling as a Phenotypic Strategy for CNS R&D
【2h】

Neuronal Circuit-Based Computer Modeling as a Phenotypic Strategy for CNS R&D

机译:基于神经元电路的计算机建模作为CNS研发的表型策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the success rate of drugs for CNS indications at an all-time low, new approaches are needed to turn the tide of failed clinical trials. This paper reviews the history of CNS drug Discovery over the last 60 years and proposes a new paradigm based on the lessons learned. The initial wave of successful therapeutics discovered using careful clinical observations was followed by an emphasis on a phenotypic target-agnostic approach, often leading to successful drugs with a rich pharmacology. The subsequent introduction of molecular biology and the focus on a target-driven strategy has largely dominated drug discovery efforts over the last 30 years, but has not increased the probability of success, because these highly selective molecules are unlikely to address the complex pathological phenotypes of most CNS disorders. In many cases, reliance on preclinical animal models has lacked robust translational power. We argue that Quantitative Systems Pharmacology (QSP), a mechanism-based computer model of biological processes informed by preclinical knowledge and enhanced by neuroimaging and clinical data could be a new powerful knowledge generator engine and paradigm for rational polypharmacy. Progress in the academic discipline of computational neurosciences, allows one to model the effect of pathology and therapeutic interventions on neuronal circuit firing activity that can relate to clinical phenotypes, driven by complex properties of specific brain region activation states. The model is validated by optimizing the correlation between relevant emergent properties of these neuronal circuits and historical clinical and imaging datasets. A rationally designed polypharmacy target profile will be discovered using reverse engineering and sensitivity analysis. Small molecules will be identified using a combination of Artificial Intelligence methods and computational modeling, tested subsequently in heterologous cellular systems with human targets. Animal models will be used to establish target engagement and for ADME-Tox, with the QSP approach complemented by in vivo preclinical models that can be further refined to increase predictive validity. The QSP platform can also mitigate the variability in clinical trials with the concept of virtual patients. Because the QSP platform integrates knowledge from a wide variety of sources in an actionable simulation, it offers the possibility of substantially improving the success rate of CNS R&D programs while, at the same time, reducing both cost and the number of animals.
机译:由于用于中枢神经系统适应症的药物成功率一直处于较低水平,因此需要新的方法来扭转临床试验失败的趋势。本文回顾了过去60年中枢神经系统药物发现的历史,并根据吸取的经验教训提出了新的范例。通过仔细的临床观察发现的成功疗法的第一波,其后是对表型靶标不可知方法的强调,这通常导致具有丰富药理学的成功药物。在随后的30年中,随后引入的分子生物学方法以及对目标驱动策略的关注在很大程度上主导了药物发现工作,但并未增加成功的可能性,因为这些高度选择性的分子不太可​​能解决复杂的病理表型。大多数中枢神经系统疾病。在许多情况下,对临床前动物模型的依赖缺乏强大的翻译能力。我们认为,定量系统药理学(QSP)是一种基于机制的生物学过程的计算机模型,可以通过临床前知识来获取信息,并通过神经影像和临床数据加以增强,可以成为合理的多元药学的新型强大知识生成引擎和范例。计算神经科学的学术学科的进步使人们可以对病理和治疗干预对神经元回路放电活动的影响进行建模,该活动可能与临床表型有关,这是由特定大脑区域激活状态的复杂特性驱动的。通过优化这些神经元回路的相关紧急属性与历史临床和影像数据集之间的相关性来验证模型。使用逆向工程和敏感性分析将发现合理设计的多药店目标概况。小分子将使用人工智能方法和计算模型的组合进行识别,随后在具有人类靶标的异源细胞系统中进行测试。动物模型将用于建立目标参与度并用于ADME-Tox,QSP方法与体内临床前模型相辅相成,可以进一步完善以提高预测有效性。 QSP平台还可以通过虚拟患者的概念减轻临床试验中的变异性。由于QSP平台在可行的模拟中集成了来自各种来源的知识,因此它提供了大幅提高CNS研发计划成功率的可能性,同时降低了成本和动物数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号