class='head no_bottom_margin' id='sec1title'>Int'/> A J-Protein Co-chaperone Recruits BiP to Monomerize IRE1 and Repress the Unfolded Protein Response
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >A J-Protein Co-chaperone Recruits BiP to Monomerize IRE1 and Repress the Unfolded Protein Response
【2h】

A J-Protein Co-chaperone Recruits BiP to Monomerize IRE1 and Repress the Unfolded Protein Response

机译:J蛋白伴侣伴侣招募BiP单体IRE1和抑制未折叠的蛋白质反应。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionSecretory and transmembrane proteins enter the endoplasmic reticulum (ER) as unfolded polypeptides and emerge as folded and processed proteins. The protein folding capacity of the ER, as measured by its luminal volume and the levels of its protein-folding and processing machinery, is matched to the inward flux of secretory and transmembrane proteins by an unfolded protein response (UPR) (, ). A stress signal arising from an imbalance between unfolded proteins and the ER machinery is recognized by three ER-localized transmembrane proteins—IRE1, PERK, and ATF6—that affect a rectifying transcriptional and translational response to restore protein-folding homeostasis (reviewed in ). Although a good deal is known about the effector functions of the UPR transducers, the physiological significance of ER stress, and the response to it (reviewed in ), the upstream molecular mechanisms that detect the ER stress signal remain poorly understood.IRE1, the most conserved and studied UPR transducer (, ), detects stress with its ER-luminal domain (IRE1LD) and dimerizes, leading to dimerization-dependent autophosphorylation of its cytosolic domain () and the subsequent activation of its cytosolic endoribonuclease activity (). Activated IRE1 unconventionally splices the mRNA of the transcription factor XBP1/HAC1 (, , ), promoting XBP1 translation and a conserved XBP1-dependent gene-expression program.Dimerization emerges as a key upstream event both in IRE1 activation and in activation of PERK, which shares with IRE1 a structurally related ER-stress-sensing luminal domain (, ). Two hypotheses have been put forth to explain the coupling of ER stress to dimerization. In one hypothesis, unfolded proteins are proposed to serve as activating ligands by directly binding to the luminal domain and stabilizing it in a dimeric conformation. An alternative hypothesis holds that the UPR is organized along principles similar to its cytosolic counterpart, the heat shock response, in which an imbalance between unfolded proteins and heat shock protein (Hsp)70 chaperones is recognized via the former’s ability to compete for the latter, kinetically disrupting repressive complexes between chaperones and stress transducers (, ).The IRE1 luminal domain crystallizes as a dimer, which, in the yeast protein, is traversed by a groove that could engage an extended peptide as a stabilizing ligand (href="#bib12" rid="bib12" class=" bibr popnode">Credle et al., 2005). Yeast IRE1LD peptide ligands have been identified, but when added to solutions of yeast IRE1LD, they principally affect a transition from a collection of oligomers to higher-order oligomers (href="#bib19" rid="bib19" class=" bibr popnode">Gardner and Walter, 2011). In the crystal structure of mammalian IRE1LD and the related PERKLD, the groove is occluded (href="#bib7" rid="bib7" class=" bibr popnode">Carrara et al., 2015a, href="#bib61" rid="bib61" class=" bibr popnode">Zhou et al., 2006). Furthermore, mammalian IRE1LD is a dimer even in pure, dilute conditions (href="#bib31" rid="bib31" class=" bibr popnode">Liu et al., 2000, href="#bib61" rid="bib61" class=" bibr popnode">Zhou et al., 2006). Thus, the role of unfolded protein binding in promoting the monomer-to-dimer transition that initiates UPR signaling remains unclear.The ER lumen has a single Hsp70 chaperone, BiP. Reversible chaperone repression as the regulatory principle of UPR activity is supported by an inverse correlation between IRE1 activity and the amount of the ER-localized BiP recovered in complex with it (href="#bib5" rid="bib5" class=" bibr popnode">Bertolotti et al., 2000, href="#bib38" rid="bib38" class=" bibr popnode">Oikawa et al., 2009, href="#bib39" rid="bib39" class=" bibr popnode">Okamura et al., 2000), a feature that extends to the related UPR transducer PERK (href="#bib5" rid="bib5" class=" bibr popnode">Bertolotti et al., 2000, href="#bib32" rid="bib32" class=" bibr popnode">Ma et al., 2002). Furthermore, mutations in yeast BiP (Kar2p) that stabilize the BiP-IRE1LD interaction repress the UPR (href="#bib25" rid="bib25" class=" bibr popnode">Kimata et al., 2003), and only unfolded proteins that engage BiP can induce the UPR (href="#bib37" rid="bib37" class=" bibr popnode">Ng et al., 1992). However, beyond plausibility suggested by these correlative cell-biological findings and the argument of evolutionary analogy, this model was otherwise unsupported.Hsp70 chaperones undergo a nucleotide-binding and hydrolysis-dependent cycle that dramatically alters their affinity for substrates. The intrinsic ATPase activity of Hsp70s is low, and ATPase-accelerating J-protein co-chaperones are therefore required for efficient substrate recognition and binding by Hsp70 (reviewed in href="#bib22" rid="bib22" class=" bibr popnode">Kampinga and Craig, 2010, href="#bib34" rid="bib34" class=" bibr popnode">Mayer, 2013). This feature arises from the ability of the co-chaperones to stimulate the ATPase activity of the Hsp70 via their conserved J domains while presenting diverse substrates to the Hsp70 via their divergent targeting domains. As a consequence, the Hsp70 initially interacts with substrates in a high-kon, ATP-bound state and then retains the substrate in a low-koff, ADP-bound state. Cycles of substrate release, accelerated by nucleotide exchange factors (NEFs, reviewed in href="#bib4" rid="bib4" class=" bibr popnode">Behnke et al., 2015) and rebinding, specified by the J domain co-chaperone, result in substrate-selective ultra-affinity (href="#bib15" rid="bib15" class=" bibr popnode">De Los Rios and Barducci, 2014, href="#bib35" rid="bib35" class=" bibr popnode">Misselwitz et al., 1998) that is the basis for formation of Hsp70-substrate complexes. Here, we drew on these well-established principles to examine the possibility that past failures to obtain biochemical support for reversible BiP-mediated repression as the basis for UPR regulation arose from the absence of a suitable ER-localized co-chaperone in the experimental systems used.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介分泌蛋白和跨膜蛋白以未折叠的多肽形式进入内质网(ER),并以折叠状态出现和加工的蛋白质。 ER的蛋白折叠能力,通过其管腔体积以及其蛋白折叠和加工机器的水平来衡量,通过未折叠的蛋白反应(UPR)与分泌和跨膜蛋白的内向通量相匹配(,)。由未折叠的蛋白质和ER机制之间的不平衡引起的应激信号被三个ER定位的跨膜蛋白IRE1,PERK和ATF6识别,这些蛋白影响整流的转录和翻译反应以恢复蛋白质折叠的稳态(见综述)。尽管对UPR换能器的效应子功能,内质网应激的生理意义以及对其的反应(在中进行了综述)的了解很多,但检测内质网应激信号的上游分子机制仍然知之甚少。保存并研究的UPR换能器(,),通过其ER内腔结构域(IRE1 LD )检测应力并二聚化,从而导致其胞质结构域()的二聚化依赖性自磷酸化作用,并随后激活其胞质核糖核酸内切酶活性()。激活的IRE1以非常规的方式剪接转录因子XBP1 / HAC1的mRNA(,,),促进XBP1的翻译和保守的依赖XBP1的基因表达程序。二聚化是IRE1激活和PERK激活的关键上游事件。与IRE1共享结构上相关的ER应力感应腔域(,)。提出了两个假设来解释ER应力与二聚化的耦合。在一个假设中,提出了未折叠的蛋白质通过直接结合至腔结构域并使其稳定在二聚体构象中而用作活化配体。另一种假设认为,UPR的组织原理类似于其胞质类似物热休克反应,其中未折叠蛋白与热休克蛋白(Hsp)70分子伴侣之间的不平衡是通过前者竞争后者的能力来识别的,伴侣和应力传感器之间的动力学破坏性阻抑复合物(,)。IRE1内腔结构域结晶为二聚体,在酵母蛋白中被一条凹槽穿过,该凹槽可以与延伸的肽作为稳定配体结合(href =“ #bib12“ rid =” bib12“ class =” bibr popnode“> Credle等人,2005 )。酵母IRE1 LD 肽配体已经被鉴定,但是当添加到酵母IRE1 LD 的溶液中时,它们主要影响从寡聚体向高阶寡聚体的过渡(< a href =“#bib19” rid =“ bib19” class =“ bibr popnode”> Gardner和Walter,2011年)。在哺乳动物IRE1 LD 和相关的PERK LD 的晶体结构中,凹槽被闭塞(href =“#bib7” rid =“ bib7” class =“ bibr popnode“> Carrara等人,2015a ,href="#bib61" rid="bib61" class=" bibr popnode"> Zhou等人,2006 )。此外,即使在纯净的稀薄条件下,哺乳动物IRE1 LD 也是二聚体(href="#bib31" rid="bib31" class=" bibr popnode"> Liu等,2000 ,href="#bib61" rid="bib61" class=" bibr popnode"> Zhou等人,2006 )。因此,尚未阐明蛋白结合在促进启动UPR信号的单体向二聚体转变中的作用尚不清楚。ER腔具有单个Hsp70伴侣BiP。可逆的伴侣抑制是UPR活性的调控原理,其受IRE1活性和与它复合而回收的ER定位的BiP量之间的逆相关性所支持(href =“#bib5” rid =“ bib5” class =“ bibr popnode“> Bertolotti等,2000 ,href="#bib38" rid="bib38" class=" bibr popnode">大川等,2009 ,href = “#bib39” rid =“ bib39” class =“ bibr popnode”> Okamura等人,2000 ),此功能扩展到相关的UPR换能器PERK(href =“#bib5” rid =“ bib5“ class =” bibr popnode“> Bertolotti等,2000 ,href="#bib32" rid="bib32" class=" bibr popnode">马等,2002 )。此外,稳定BiP-IRE1 LD 相互作用的酵母BiP(Kar2p)突变会抑制UPR(href="#bib25" rid="bib25" class=" bibr popnode"> Kimata等等,2003 ),只有与BiP结合的未折叠蛋白才能诱导UPR(href="#bib37" rid="bib37" class=" bibr popnode"> Ng等,1992 a>)。然而,这些相关的细胞生物学研究结果和进化类比的论点表明了合理性Hsp70分子伴侣经历了核苷酸结合和水解依赖性循环,从而大大改变了它们对底物的亲和力。 Hsp70s的固有ATPase活性低,因此需要HATP70有效地识别和结合HSP70才能促进ATPase的J蛋白共伴侣(在href =“#bib22” rid =“ bib22” class =“ bibr中进行了综述popnode“> Kampinga和Craig,2010年,href="#bib34" rid="bib34" class=" bibr popnode"> Mayer,2013年)。此功能是由于陪伴分子通过其保守的J结构域刺激Hsp70的ATPase活性,同时通过其不同的靶向结构域向Hsp70呈现多种底物而产生的。结果,Hsp70最初以高kon ATP结合状态与底物相互作用,然后将底物保持在低koff ADP结合状态。底物释放的周期受核苷酸交换因子(NEF,在href="#bib4" rid="bib4" class=" bibr popnode"> Behnke等人,2015 中审查)的加速下进行,并重新绑定由J域共同伴侣产生,可产生底物选择性超亲和性(href="#bib15" rid="bib15" class=" bibr popnode"> De Los Rios and Barducci,2014 ,< a href =“#bib35” rid =“ bib35” class =“ bibr popnode”> Misselwitz等,1998 ),这是形成Hsp70-底物复合物的基础。在这里,我们借鉴了这些公认的原则,研究了由于实验系统中缺少合适的ER定位的伴侣伴侣而导致过去无法获得可逆BiP介导的阻遏作为UPR调节基础的生化支持的可能性用过的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号