class='head no_bottom_margin' id='sec1title'>Int'/> Electrically Sorted Single-Walled Carbon Nanotubes-Based Electron Transporting Layers for Perovskite Solar Cells
首页> 美国卫生研究院文献>iScience >Electrically Sorted Single-Walled Carbon Nanotubes-Based Electron Transporting Layers for Perovskite Solar Cells
【2h】

Electrically Sorted Single-Walled Carbon Nanotubes-Based Electron Transporting Layers for Perovskite Solar Cells

机译:用于钙钛矿型太阳能电池的电子分类单壁碳纳米管电子传输层

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionOrganic−inorganic halide perovskite solar cells (PSCs) have received a great deal of attention from the photovoltaic (PV) community owing to the remarkable progress in the performance, which has recently exceeded 23% (). Hybrid perovskite-based light absorbers exhibit an outstanding combination of desirable properties, including high absorption coefficients, high ambipolar carrier transport, and long charge-diffusion lengths, in addition to their attractive features such as ease of fabrication, low cost, and rigid/flexible substrate compatibility (, , , , ). A typical state-of-the-art PSC that exhibits high device efficiency consists of a transparent conducting oxide substrate, compact layer, semiconducting metal oxide scaffold layer, perovskite light absorber, hole transporting layer (HTL), and metal electrode. In such a device architecture, the semiconducting metal oxide nanoparticles (NPs) play an important role in extracting and transporting electrons from the perovskite to the conductive electrode (, ). The most commonly used electron transporting material (ETM) is the semiconducting metal oxide TiO2. TiO2 nanostructure materials have been intensively used in various applications such as photovoltaics () and photocatalysis (, ) because of their good chemical stability, wide band gap, lack of toxicity, and high transparency (). However, the TiO2-based ETM suffers from intrinsic drawbacks including low electron mobility, numerous grain boundaries, and heterogeneous spreading of TiO2 nanocrystallite network, which introduces a random transit path for the electrons, leading to rapid charge recombination and thus a deterioration of device performance (). Therefore, there is a real necessity to discover and investigate alternative materials to replace or improve the properties of TiO2-based ETM for further enhancement in the PCE of the PSCs. In this context, various highly conducting carbon-based nanomaterials such as graphene and its derivatives (, , href="#bib56" rid="bib56" class=" bibr popnode">Wang et al., 2013), fullerenes (href="#bib60" rid="bib60" class=" bibr popnode">Wojciechowski et al., 2014, href="#bib22" rid="bib22" class=" bibr popnode">Hou et al., 2018, href="#bib61" rid="bib61" class=" bibr popnode">Yoon et al., 2016), and carbon nanotubes (href="#bib17" rid="bib17" class=" bibr popnode">Habisreutinger et al., 2014b, href="#bib18" rid="bib18" class=" bibr popnode">Habisreutinger et al., 2017, href="#bib36" rid="bib36" class=" bibr popnode">Li et al., 2014, href="#bib39" rid="bib39" class=" bibr popnode">Luo et al., 2017b, href="#bib40" rid="bib40" class=" bibr popnode">Luo et al., 2018) have been widely used in PSCs and are recognized as promising candidates to facilitate charge extraction/transportation and extend electron lifetime. Among these nanomaterials, SWCNTs have shown remarkable properties, such as high aspect ratio, excellent electron mobility, high chemical stability, outstanding mechanical and thermal properties, high transparency, and suitable electronic structure (href="#bib63" rid="bib63" class=" bibr popnode">Zhou et al., 2009), making them ideal for improving the performance of PSCs (href="#bib2" rid="bib2" class=" bibr popnode">Aitola et al., 2016, href="#bib25" rid="bib25" class=" bibr popnode">Jeon et al., 2015, href="#bib35" rid="bib35" class=" bibr popnode">Li et al., 2016). Recently, our group reported for the first time the successful fabrication of efficient PSCs by incorporating SWCNTs into the TiO2 photoelectrodes (href="#bib8" rid="bib8" class=" bibr popnode">Batmunkh et al., 2017b). This work highlights the potential of SWCNTs to enhance the properties of the electron transporting layer (ETL) in PSCs. It is worth noting that pristine SWCNTs (p-SWCNTs) (before separation) are commercially available as a mixture of two-thirds semiconducting (s-SWCNTs) and one-third metallic (m-SWCNTs) nanotubes. Such a variation in the nanotube properties is detrimental to device performance and reproducibility. Driven by the recent advances made in the separation and controlled growth methods of SWCNTs, it is now viable to tailor the optoelectronic properties of this fascinating material to maximize the charge extraction and transport in PSCs (href="#bib6" rid="bib6" class=" bibr popnode">Bati et al., 2018). For example, Snaith's group employed a double HTL composed of P3HT-SWCNTs network and poly(methyl methacrylate) (PMMA) matrix (href="#bib16" rid="bib16" class=" bibr popnode">Habisreutinger et al., 2014a). Comparing the performance of the devices when the as-produced SWCNTs (2:1 s-:m-SWCNTs) were replaced with highly enriched m-SWNTs, an improvement was evident boosting the PCE from a maximum of 14.2% to 15.3%. This efficiency improvement is attributed to the conductivity enhancement resulting from the incorporation of m-SWCNTs with their high conductivity as compared with their s-SWCNTs counterparts. Blackburn and co-workers reported the improved efficiency, stability, and reduced hysteresis when a pure s-SWCNTs layer highly enriched with (6,5) nanotubes was inserted as an interfacial layer between the perovskite layer and Spiro-OMeTAD (href="#bib24" rid="bib24" class=" bibr popnode">Ihly et al., 2016). The PCE of such a device configuration exhibited a dramatic improvement from 14.7% to 16.5%.Although PSCs based on TiO2 with pristine SWCNTs incorporated have shown improved performance and stability, a crucial fundamental question regarding whether integrating a pure single electronic-type SWCNT into the TiO2 photoelectrodes would provide better charge transfer still remains. Moreover, further insight into the effect of the distribution of carbon nanotube (CNT) electronic types would be very valuable.Herein, we report the implementation of SWCNTs separated by electrical type (i.e., semiconducting and metallic) into TiO2 at precisely tuned ratios as an efficient ETL for PSCs. At the optimum SWCNT loadings, notable enhancement in the PV efficiency was achieved regardless of the nanotube types incorporated. Interestingly, (2:1 w/w) s-:m-SWCNTs showed a remarkable PCE of 19.35%, whereas the best performing TiO2-only reference device exhibited an efficiency of 17.04%. This significant efficiency enhancement is attributed to the reduced charge transfer resistance (Rct) resulting from the favorable energy level alignment at the perovskite/ETL interface. In addition, our devices with nanotubes showed improved stabilities under continuous light illumination in ambient environment and exhibited less hysteresis behavior.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介有机-无机卤化物钙钛矿太阳能电池(PSC)已引起了众多关注光伏(PV)社区由于其性能的显着进步,最近已超过23%()。基于钙钛矿的混合光吸收剂除了具有易于制造,低成本和刚性/柔性等吸引人的特性外,还具有理想特性的出色组合,包括高吸收系数,高双极性载流子传输和长电荷扩散长度。基材相容性(,,,,)。具有高器件效率的典型的最新PSC由透明导电氧化物基板,致密层,半导体金属氧化物支架层,钙钛矿光吸收剂,空穴传输层(HTL)和金属电极组成。在这样的设备架构中,半导体金属氧化物纳米粒子(NPs)在将钙钛矿中的电子提取和传输到导电电极中起着重要的作用。最常用的电子传输材料(ETM)是半导体金属氧化物TiO2。 TiO2纳米结构材料因其良好的化学稳定性,宽禁带宽度,缺乏毒性和高透明度()而被广泛用于各种应用中,例如光伏()和光催化()。但是,基于TiO2的ETM存在固有的缺陷,包括电子迁移率低,晶界众多以及TiO2纳米晶网络的不均匀扩散,这为电子引入了随机的传输路径,导致电荷快速复合,从而降低了器件性能。 ()。因此,确实有必要发现和研究替代材料以替代或改善TiO2基ETM的性能,以进一步增强PSC的PCE。在这种情况下,各种高导电性的碳基纳米材料,例如石墨烯及其衍生物(,,href="#bib56" rid="bib56" class=" bibr popnode"> Wang等,2013 ),富勒烯(href="#bib60" rid="bib60" class=" bibr popnode"> Wojciechowski等人,2014 ,href =“#bib22” rid =“ bib22” class = “ bibr popnode“> Hou等人,2018 ,href="#bib61" rid="bib61" class=" bibr popnode"> Yoon等人,2016 )和碳纳米管(href="#bib17" rid="bib17" class=" bibr popnode"> Habisreutinger等,2014b ,href =“#bib18” rid =“ bib18” class =“ bibr popnode“> Habisreutinger等人,2017 ,href="#bib36" rid="bib36" class=" bibr popnode"> Li等人,2014 ,href =” #bib39“ rid =” bib39“ class =” bibr popnode“>罗等人,2017b ,href="#bib40" rid="bib40" class=" bibr popnode">罗等人。 ,2018 )已广泛用于PSC中,并被认为是促进电荷提取/传输和延长电子寿命的有希望的候选者。在这些纳米材料中,SWCNT具有出色的性能,例如高长宽比,出色的电子迁移率,高化学稳定性,出色的机械和热性能,高透明性以及合适的电子结构(href =“#bib63” rid =“ bib63 “ class =” bibr popnode“> Zhou等人,2009 ),使其非常适合提高PSC的性能(href="#bib2" rid="bib2" class=" bibr popnode"> Aitola et al。,2016 ,href="#bib25" rid="bib25" class=" bibr popnode"> Jeon et al。,2015 ,href =“#bib35” rid =“ bib35” class =“ bibr popnode”> Li等人,2016 )。最近,我们的研究小组首次报道了通过将SWCNT掺入TiO2光电极中成功制造出高效PSC的成功方法(href="#bib8" rid="bib8" class=" bibr popnode"> Batmunkh等,2017b < / a>)。这项工作强调了SWCNT在增强PSC中电子传输层(ETL)的性能方面的潜力。值得注意的是,原始SWCNT(p-SWCNT)(分离前)是三分之二的半导体(s-SWCNT)和三分之一的金属(m-SWCNT)纳米管的混合物。纳米管性质的这种变化不利于装置性能和可再现性。在单壁碳纳米管的分离和控制生长方法方面取得的最新进展的推动下,现在可以定制这种引人入胜的材料的光电性能,以最大程度地在PSC中提取和运输电荷(href =“#bib6” rid =“ bib6“ class =” bibr popnode“> Bati等人,2018 )。例如,Snaith的小组采用了由P3HT-SWCNTs网络和聚甲基丙烯酸甲酯(PMMA)矩阵组成的双重HTL(href="#bib16" rid="bib16" class=" bibr popnode"> Habisreutinger等。,2014a )。比较以高浓缩的m-SWNT替代生产的SWCNT(2:1 s :: m-SWCNT)时设备的性能,明显的改进将PCE从最高的14.2%提高到15.3%。效率的提高归因于与m-SWCNT对应物相比,由于结合了m-SWCNTs具有高电导率而导致的电导率提高。布莱克本及其同事报告说,当在钙钛矿层和Spiro-OMeTAD之间插入一个高浓度(6,5)纳米管的纯s-SWCNTs层作为界面层时,效率,稳定性和滞后性降低了(href = “#bib24” rid =“ bib24” class =“ bibr popnode”> Ihly等人,2016 )。这种器件配置的PCE表现出从14.7%到16.5%的显着提高。尽管基于TiO2并结合了原始SWCNT的PSC表现出了改进的性能和稳定性,这是一个关键的基本问题,即是否将纯单电子型SWCNT集成到其中。 TiO 2光电极将提供更好的电荷转移,仍然存在。此外,进一步了解碳纳米管(CNT)电子类型的分布的影响将非常有价值。在此,我们报道了通过电学类型(即半导体和金属)将SWCNT以电学类型(即半导体和金属)分离成精确调整比例的方法。用于PSC的高效ETL。在最佳的SWCNT负载下,无论采用哪种纳米管类型,PV效率均得到显着提高。有趣的是,(2:1 w / w)s-:m-SWCNT显示出显着的PCE为19.35%,而性能最佳的仅TiO2的参比器件显示出17.04%的效率。效率的显着提高归因于钙钛矿/ ETL界面处的能级对齐带来的电荷转移阻力(Rct)降低。此外,我们的带有纳米管的器件在周围环境中连续光照下显示出更高的稳定性,并表现出更少的磁滞行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号