首页> 美国卫生研究院文献>Entropy >Time-Shift Multiscale Fuzzy Entropy and Laplacian Support Vector Machine Based Rolling Bearing Fault Diagnosis
【2h】

Time-Shift Multiscale Fuzzy Entropy and Laplacian Support Vector Machine Based Rolling Bearing Fault Diagnosis

机译:时移多尺度模糊熵和拉普拉斯支持矢量机基滚动轴承故障诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multiscale entropy (MSE), as a complexity measurement method of time series, has been widely used to extract the fault information hidden in machinery vibration signals. However, the insufficient coarse graining in MSE will result in fault pattern information missing and the sample entropy used in MSE at larger factors will fluctuate heavily. Combining fractal theory and fuzzy entropy, the time shift multiscale fuzzy entropy (TSMFE) is put forward and applied to the complexity analysis of time series for enhancing the performance of MSE. Then TSMFE is used to extract the nonlinear fault features from vibration signals of rolling bearing. By combining TSMFE with the Laplacian support vector machine (LapSVM), which only needs very few marked samples for classification training, a new intelligent fault diagnosis method for rolling bearing is proposed. Also the proposed method is applied to the experiment data analysis of rolling bearing by comparing with the existing methods and the analysis results show that the proposed fault diagnosis method can effectively identify different states of rolling bearing and get the highest recognition rate among the existing methods.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号