首页> 外文学位 >A Bayesian least squares support vector machines based framework for fault diagnosis and failure prognosis.
【24h】

A Bayesian least squares support vector machines based framework for fault diagnosis and failure prognosis.

机译:基于贝叶斯最小二乘支持向量机的框架,用于故障诊断和故障预测。

获取原文
获取原文并翻译 | 示例

摘要

A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions.;An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters.;The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior and any abnormal or novel data during real-time operation. The results of the scheme are interpreted as a posterior probability of health (1 - probability of fault). As shown through two case studies in Chapter 3,the scheme is well suited for diagnosing imminent faults in dynamical non-linear systems.;Finally, the failure prognosis scheme is based on an incremental weighted Bayesian LS-SVR machine. It is particularly suited for online deployment given the incremental nature of the algorithm and the quick optimization problem solved in the LS-SVR algorithm. By way of kernelization and a Gaussian Mixture Modeling (GMM) scheme, the algorithm can estimate "possibly" non-Gaussian posterior distributions for complex non-linear systems. An efficient regression scheme associated with the more rigorous core algorithm allows for long-term predictions, fault growth estimation with confidence bounds and remaining useful life (RUL) estimation after a fault is detected.;The leading contributions of this thesis are (a) the development of a novel Bayesian Anomaly Detector for efficient and reliable Fault Detection and Identification (FDI) based on Least Squares Support Vector Machines, (b) the development of a data-driven real-time architecture for long-term Failure Prognosis using Least Squares Support Vector Machines, (c) Uncertainty representation and management using Bayesian Inference for posterior distribution estimation and hyper-parameter tuning, and finally (d) the statistical characterization of the performance of diagnosis and prognosis algorithms in order to relate the efficiency and reliability of the proposed schemes.
机译:对于在复杂(可能是非高斯)噪声环境中运行的复杂非线性系统进行在线实时监视,需要一种高可信度,低开销的预测和健康管理(PHM)系统。本文提出了一种基于贝叶斯最小二乘支持向量机(LS-SVM)的框架,用于非线性非高斯系统的故障诊断和故障预测。该方法假设实时过程测量的可用性,一组故障指示器的定义以及经验性知识(或历史数据)的存在,以表征正常和异常工作条件。;高效而强大的最小二乘支持向量机(在贝叶斯推理框架内设置的LS-SVM算法不仅允许开发用于诊断和预后的实时算法,而且还提供了坚实的理论框架来解决与诊断的分类和预后的回归建模有关的关键概念。 SVM机器是基于结构风险最小化(SRM)原理建立的,它倾向于在低经验风险和小容量之间找到良好的折衷。 SVM的关键功能是使用非线性内核,缺少局部最小值,解决方案的稀疏性以及通过优化裕度获得的容量控制。与LS-SVM关联的贝叶斯推断框架允许对结果进行概率解释以进行诊断和预后。额外的推理级别提供了令人垂涎的建模参数的适应性和可调性。本研究中考虑的两个主要模块是故障诊断和故障预测。为了设计一种有效且可靠的故障诊断方案,提出了一种基于LS-SVM机器的新型异常检测器。所提出的方案仅使用基线数据来构建一类LS-SVM机器,该机器在显示在线数据时能够在实时操作期间区分正常行为和任何异常或新颖数据。该方案的结果被解释为健康的后验概率(1-故障概率)。如第3章中的两个案例研究所示,该方案非常适合诊断动态非线性系统中的迫在眉睫的故障。最后,故障诊断方案基于增量加权贝叶斯LS-SVR机器。考虑到该算法的增量性质以及LS-SVR算法中解决的快速优化问题,它特别适合于在线部署。通过核化和高斯混合模型(GMM)方案,该算法可以为复杂的非线性系统估计“可能”的非高斯后验分布。与更严格的核心算法相关联的有效回归方案可以进行长期预测,检测出具有置信范围的故障增长估计值以及检测到故障后的剩余使用寿命(RUL)估计值;;本论文的主要贡献是(a)基于最小二乘支持向量机的新型贝叶斯异常检测器的开发,以实现高效,可靠的故障检测和识别(FDI),(b)使用最小二乘支持开发用于长期故障预测的数据驱动的实时体系结构向量机,(c)使用贝叶斯推理进行后验分布估计和超参数调整的不确定性表示和管理,最后(d)诊断和预后算法性能的统计表征,以便关联所提出建议的效率和可靠性计划。

著录项

  • 作者

    Khawaja, Taimoor Saleem.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering General.;Engineering Aerospace.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号