首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Deep Learning-Based Adaptive Neural-Fuzzy Structure Scheme for Bearing Fault Pattern Recognition and Crack Size Identification
【2h】

Deep Learning-Based Adaptive Neural-Fuzzy Structure Scheme for Bearing Fault Pattern Recognition and Crack Size Identification

机译:基于深度学习的自适应神经模糊结构方案用于轴承故障模式识别和裂缝尺寸识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bearings are complex components with onlinear behavior that are used to mitigate the effects of inertia. These components are used in various systems, including motors. Data analysis and condition monitoring of the systems are important methods for bearing fault diagnosis. Therefore, a deep learning-based adaptive neural-fuzzy structure technique via a support vector autoregressive-Laguerre model is presented in this study. The proposed scheme has three main steps. First, the support vector autoregressive-Laguerre is introduced to approximate the vibration signal under normal conditions and extract the state-space equation. After signal modeling, an adaptive neural-fuzzy structure observer is designed using a combination of high-order variable structure techniques, the support vector autoregressive-Laguerre model, and adaptive neural-fuzzy inference mechanism for normal and abnormal signal estimation. The adaptive neural-fuzzy structure observer is the main part of this work because, based on the difference between signal estimation accuracy, it can be used to identify faults in the bearings. Next, the residual signals are generated, and the signal conditions are detected and identified using a convolution neural network (CNN) algorithm. The effectiveness of the proposed deep learning-based adaptive neural-fuzzy structure technique by support vector autoregressive-Laguerre model was analyzed using the Case Western Reverse University (CWRU) bearing vibration dataset. The proposed scheme is compared to five state-of-the-art techniques. The proposed algorithm improved the average pattern recognition and crack size identification accuracy by 1.99%, 3.84%, 15.75%, 5.87%, 30.14%, and 35.29% compared to the combination of the high-order variable structure technique with the support vector autoregressive-Laguerre model and CNN, the combination of the variable structure technique with the support vector autoregressive-Laguerre model and CNN, the combination of RAW signal and CNN, the combination of the adaptive neural-fuzzy structure technique with the support vector autoregressive-Laguerre model and support vector machine (SVM), the combination of the high-order variable structure technique with the support vector autoregressive-Laguerre model and SVM, and the combination of the variable structure technique with the support vector autoregressive-Laguerre model and SVM, respectively.
机译:轴承是具有透过力行为的复杂组件,用于减轻惯性的影响。这些组件用于各种系统,包括电机。系统的数据分析和状态监测是轴承故障诊断的重要方法。因此,本研究介绍了通过支持载体自动增加的基于深度学习的自适应神经模糊结构技术。拟议计划有三个主要步骤。首先,引入支持向量自动增加Laguerre以近似正常条件下的振动信号,提取状态空间方程。在信号建模之后,使用高阶变量结构技术,支持向量自动增加 - LAGUERRE模型以及用于正常和异常信号估计的自适应神经模糊推理机制设计自适应神经模糊结构观察者。自适应神经模糊结构观察者是这项工作的主要部分,因为,基于信号估计精度之间的差异,它可用于识别轴承中的故障。接下来,生成残余信号,并使用卷积神经网络(CNN)算法检测和识别信号条件。采用案例西方逆向大学(CWRU)轴承振动数据集分析了支持向量的基于深度学习的自适应神经模糊结构技术的提出的基于深度学习的自适应神经模糊结构技术。该拟议方案与五种最先进的技术进行了比较。该算法将平均模式识别和裂缝尺寸识别精度提高了1.99%,3.84%,15.75%,5.87%,30.14%和35.29%与支持向量自回归 - 的高阶可变结构技术的组合相比Laguerre模型和CNN,可变结构技术的组合与支持载体自动增加 - LAGUERRE模型和CNN,原始信号和CNN的组合,适应性神经模糊结构技术的组合与支持载体自动增加 - 拉格武里模型支持向量机(SVM),高阶变量结构技术的组合与支持向量自动增加 - LAGUERRE模型和SVM,以及可变结构技术与支持载体自动增加到自动推移 - LAGUERRE模型和SVM的组合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号