首页> 美国卫生研究院文献>other >Plasmon-Resonant Nanoparticles and Nanostars With Magnetic Cores: Synthesis and Magnetomotive Imaging
【2h】

Plasmon-Resonant Nanoparticles and Nanostars With Magnetic Cores: Synthesis and Magnetomotive Imaging

机译:具有磁芯的等离子体 - 共振纳米粒子和纳米杆子:合成和磁力影像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Plasmon-resonant gold nanostars (NSTs) with magnetic cores were synthesized by a multistep sequence from superparamagnetic Fe3O4 nanoparticles (NPs), and evaluated as optical contrast agents under magnetomotive (MM) imaging conditions. Core–shell Fe3O4@Au NPs were prepared in nonpolar organic solvents with nanometer control over shell thickness, and with good epitaxy to the Fe3O4 surface. Anisotropic growth was performed in micellar solutions of cetyltrimethylammonium bromide (CTAB) under mildly reducing conditions, resulting in NSTs with physical features similar to those produced from colloidal gold seeds. NSTs could be produced below 100 nm from tip to tip but seed size had a significant impact on growth habit, with larger seed particles producing submicron-sized “morning stars.” Both NSTs and aggregated core–shell NPs are responsive to in-plane magnetic field gradients and can provide enhanced near-infrared (NIR) contrast under MM conditions, but do so by different mechanisms. NSTs can modulate polarized NIR scattering with minimal translational motion, giving the appearance of a periodic but stationary “blinking,” whereas core–shell NP aggregates require lateral displacement for signal modulation. The polarization-sensitive MM imaging modality offers the dual advantage of enhanced signal quality and reduced background signal, and can be applied toward the detection of magnetomotive NSTs in heterogenous biological samples, as illustrated by their detection inside of granular cells such as macrophages.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号