首页> 美国卫生研究院文献>other >Cooperation between Catalytic and DNA-binding Domains Enhances Thermostability and Supports DNA Synthesis at Higher Temperatures by Thermostable DNA Polymerases
【2h】

Cooperation between Catalytic and DNA-binding Domains Enhances Thermostability and Supports DNA Synthesis at Higher Temperatures by Thermostable DNA Polymerases

机译:由热稳定性DNa聚合酶催化DNa和结合结构域增强的热稳定性和支架DNa合成在较高的温度之间的合作

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases (Pavlov et. al., (2002) Proc. Natl. Acad. Sci. USA >99, 13510–13515). The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various non-specific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting Helix-hairpin-Helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species, but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of TopoV HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105°C by maintaining processivity of DNA synthesis at high temperatures. We also found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding templates to DNA polymerases.
机译:我们之前介绍过的一般动力学方法,用于对比较研究的过程,热稳定性和对DNA聚合酶抑制剂的抗性(Pavlov等人,(2002)Proc。Natl。Acad。SCI。美国> 99 ,13510-13515)。所提出的方法被成功地应用于表征通过融合具有各种非特异性DNA结合结构域产生的催化DNA聚合域结构域产生的杂化DNA聚合酶。在这里,我们使用开发的动力学分析来评估DNA聚合酶的DNA伸长的基本参数,进一步研究先前构造的和新的嵌合DNA聚合酶的互联间相互作用。我们表明将螺旋发夹 - 螺旋(HHH)结构域连接到催化聚合酶结构域可以增加热稳定性,不仅可以从极其嗜热物种中的DNA聚合酶,而且还增加来自天然嗜热嗜热菌芽孢杆菌的酶。我们还证明,通过在高温下维持DNA合成的处理率,通过保持105℃的嵌合聚合酶,加入TopoV HHH结构域的添加扩展了高效的DNA合成。我们还发现,DNA聚合酶中可逆的高温结构转变降低了这些酶与模板的结合率。此外,Arrhenius方程的激活能量和预指数因素表明,扩散控制关联的静电增强机制在结合模板中对DNA聚合酶发挥了微小的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号