首页> 美国卫生研究院文献>other >Structure and mutagenesis reveal essential capsid protein interactions for KSHV replication
【2h】

Structure and mutagenesis reveal essential capsid protein interactions for KSHV replication

机译:结构和诱变揭示了KSHV复制所必需的衣壳蛋白相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Kaposi’s sarcoma-associated herpesvirus (KSHV) causes Kaposi’s sarcoma,, a cancer that commonly affects patients with AIDS and which is endemic in sub-Saharan Africa. The KSHV capsid is highly pressurized by its double-stranded DNA genome, as are the capsids of the eight other human herpesviruses. Capsid assembly and genome packaging of herpesviruses are prone to interruption and can therefore be targeted for the structure-guided development of antiviral agents. However, herpesvirus capsids—comprising nearly 3,000 proteins and over 1,300 Å in diameter—present a formidable challenge to atomic structure determination and functional mapping of molecular interactions. Here we report a 4.2 Å resolution structure of the KSHV capsid, determined by electron-counting cryo-electron microscopy, and its atomic model, which contains 46 unique conformers of the major capsid protein (MCP), the smallest capsid protein (SCP) and the triplex proteins Tri1 and Tri2. Our structure and mutagenesis results reveal a groove in the upper domain of the MCP that contains hydrophobic residues that interact with the SCP, which in turn crosslinks with neighbouring MCPs in the same hexon to stabilize the capsid. Multiple levels of MCP–MCP interaction—including six sets of stacked hairpins lining the hexon channel, disulfide bonds across channel and buttress domains in neighbouring MCPs, and an interaction network forged by the N-lasso domain and secured by the dimerization domain—define a robust capsid that is resistant to the pressure exerted by the enclosed genome. The triplexes, each composed of two Tri2 molecules and a Tri1 molecule, anchor to the capsid floor via a Tri1 N-anchor to plug holes in the MCP network and rivet the capsid floor. These essential roles of the MCP N-lasso and Tri1 N-anchor are verified by serial-truncation mutageneses. Our proof-of-concept demonstration of the use of polypeptides that mimic the smallest capsid protein to inhibit KSHV lytic replication highlights the potential for exploiting the interaction hotspots revealed in our atomic structure to develop antiviral agents.
机译:卡波西氏肉瘤相关疱疹病毒(KSHV)引起卡波西氏肉瘤 ,一种常见于艾滋病 患者的癌症,在撒哈拉以南非洲 。 KSHV衣壳被其双链DNA基因组高度加压,其他八种人类疱疹病毒 的衣壳也是如此。疱疹病毒的衣壳装配和基因组包装容易中断,因此可以作为抗病毒药物在结构指导下的开发目标。然而,疱疹病毒衣壳-包含近3,000种蛋白质和直径超过1300Å-对原子结构确定 和分子相互作用的功能图谱提出了巨大的挑战。在这里,我们报告了通过电子计数低温电子显微镜确定的KSHV衣壳的4.2Å分辨率结构及其原子模型,该模型包含46个独特的主要衣壳蛋白(MCP),最小衣壳蛋白(SCP)和三重蛋白质Tri1和Tri2。我们的结构和诱变结果显示,MCP上部结构中存在一个凹槽,该凹槽包含与SCP相互作用的疏水性残基,后者又与同一六邻体中的相邻MCP交联以稳定衣壳。 MCP-MCP交互作用的多个级别(包括六套六边形六边形堆叠的发夹,相邻MCP中跨通道和支撑结构域的二硫键,以及由N-套索结构域构成并由二聚化域保护的交互网络)坚固的衣壳,可抵抗封闭的基因组所施加的压力。三元组每个由两个Tri2分子和一个Tri1分子组成,它们通过Tri1 N锚固定在衣壳底上,以堵塞MCP网络中的孔并铆钉衣壳底。 MCP N套索和Tri1 N锚的这些基本作用已通过串行截短突变法得到了验证。我们使用模拟最小衣壳蛋白的多肽来抑制KSHV裂解复制的概念验证证明了利用我们原子结构中揭示的相互作用热点开发抗病毒剂的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号