首页> 美国卫生研究院文献>other >Impaired Myofilament Contraction Drives Right Ventricular Failure Secondary to Pressure Overload: Model Simulations Experimental Validation and Treatment Predictions
【2h】

Impaired Myofilament Contraction Drives Right Ventricular Failure Secondary to Pressure Overload: Model Simulations Experimental Validation and Treatment Predictions

机译:肌丝收缩受损导致右心室衰竭继发于压力超负荷:模型模拟实验验证和治疗预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Introduction: Pulmonary hypertension (PH) causes pressure overload leading to right ventricular failure (RVF). Myocardial structure and myocyte mechanics are altered in RVF but the direct impact of these cellular level factors on organ level function remain unclear. A computational model of the cardiovascular system that integrates cellular function into whole organ function has recently been developed. This model is a useful tool for investigating how changes in myocyte structure and mechanics contribute to organ function. We use this model to determine how measured changes in myocyte and myocardial mechanics contribute to RVF at the organ level and predict the impact of myocyte-targeted therapy.>Methods: A multiscale computational framework was tuned to model PH due to bleomycin exposure in mice. Pressure overload was modeled by increasing the pulmonary vascular resistance (PVR) and decreasing pulmonary artery compliance (CPA). Myocardial fibrosis and the impairment of myocyte maximum force generation (Fmax) were simulated by increasing the collagen content (↑PVR + ↓CPA + fibrosis) and decreasing Fmax (↑PVR + ↓CPA + fibrosis + ↓Fmax). A61603 (A6), a selective α1A-subtype adrenergic receptor agonist, shown to improve Fmax was simulated to explore targeting myocyte generated Fmax in PH.>Results: Increased afterload (RV systolic pressure and arterial elastance) in simulations matched experimental results for bleomycin exposure. Pressure overload alone (↑PVR + ↓CPA) caused decreased RV ejection fraction (EF) similar to experimental findings but preservation of cardiac output (CO). Myocardial fibrosis in the setting of pressure overload (↑PVR + ↓PAC + fibrosis) had minimal impact compared to pressure overload alone. Including impaired myocyte function (↑PVR + ↓PAC + fibrosis + ↓Fmax) reduced CO, similar to experiment, and impaired EF. Simulations predicted that A6 treatment preserves EF and CO despite maintained RV pressure overload.>Conclusion: Multiscale computational modeling enabled prediction of the contribution of cellular level changes to whole organ function. Impaired Fmax is a key feature that directly contributes to RVF. Simulations further demonstrate the therapeutic benefit of targeting Fmax, which warrants additional study. Future work should incorporate growth and remodeling into the computational model to enable prediction of the multiscale drivers of the transition from dysfunction to failure.
机译:>简介:肺动脉高压(PH)导致压力超负荷,导致右心室衰竭(RVF)。 RVF中的心肌结构和心肌细胞力学发生了变化,但这些细胞水平因子对器官水平功能的直接影响尚不清楚。最近开发了将细胞功能整合到整个器官功能中的心血管系统的计算模型。该模型是研究肌细胞结构和力学变化如何影响器官功能的有用工具。我们使用此模型来确定在器官水平上测得的心肌细胞变化和心肌力学如何对RVF做出贡献,并预测针对心肌细胞的疗法的影响。>方法:调整了多尺度计算框架以模拟PH博来霉素在小鼠中的暴露。通过增加肺血管阻力(PVR)和降低肺动脉顺应性(CPA)来模拟压力超负荷。通过增加胶原蛋白含量(↑PVR +↓CPA +纤维化)和降低Fmax(↑PVR +↓CPA +纤维化+↓Fmax)来模拟心肌纤维化和心肌最大力量生成(Fmax)的损害。模拟了显示可改善Fmax的选择性α1A亚型肾上腺素受体激动剂A61603(A6),以探索在PH中靶向心肌细胞产生的Fmax。>结果:在模拟中后负荷增加(RV收缩压和动脉弹性)与博来霉素暴露的实验结果相符。单独的压力超负荷(↑PVR +↓CPA)导致RV射血分数(EF)降低,与实验结果相似,但保留了心输出量(CO)。与单独的压力超负荷相比,在压力超负荷(↑PVR +↓PAC +纤维化)的情况下,心肌纤维化的影响最小。包括心肌细胞功能受损(↑PVR +↓PAC +纤维化+↓Fmax)降低的CO含量(与实验相似)和EF含量降低。模拟预测尽管维持RV压力超负荷,A6治疗仍能保留EF和CO。>结论:多尺度计算模型能够预测细胞水平变化对整个器官功能的贡献。 Fmax受损是直接导致RVF的关键特征。模拟进一步证明了靶向Fmax的治疗益处,值得进一步研究。未来的工作应该将增长和重塑纳入计算模型,以预测从功能障碍到故障的多尺度驱动因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号