首页> 美国卫生研究院文献>Scientific Reports >Demonstration of self-truncated ionization injection for GeV electron beams
【2h】

Demonstration of self-truncated ionization injection for GeV electron beams

机译:GeV电子束自截断电离注入的演示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ionization-induced injection mechanism was introduced in 2010 to reduce the laser intensity threshold for controllable electron trapping in laser wakefield accelerators (LWFA). However, usually it generates electron beams with continuous energy spectra. Subsequently, a dual-stage target separating the injection and acceleration processes was regarded as essential to achieve narrow energy-spread electron beams by ionization injection. Recently, we numerically proposed a self-truncation scenario of the ionization injection process based upon overshooting of the laser-focusing in plasma which can reduce the electron injection length down to a few hundred micrometers, leading to accelerated beams with extremely low energy-spread in a single-stage. Here, using 100 TW-class laser pulses we report experimental observations of this injection scenario in centimeter-long plasma leading to the generation of narrow energy-spread GeV electron beams, demonstrating its robustness and scalability. Compared with the self-injection and dual-stage schemes, the self-truncated ionization injection generates higher-quality electron beams at lower intensities and densities, and is therefore promising for practical applications.
机译:2010年引入了电离诱导注入机制,以降低激光强度阈值,以控制激光尾场加速器(LWFA)中可控的电子俘获。但是,通常它会产生具有连续能谱的电子束。随后,将注入和加速过程分开的双阶段靶标被认为是通过电离注入实现窄能量扩散电子束的关键。最近,我们以等离子体中激光聚焦的过冲为基础,从数字上提出了电离注入过程的自截断方案,该方案可以将电子注入长度减小到几百微米,从而导致加速束具有极低的能量散布。一个阶段。在这里,我们使用100 TW级激光脉冲报告了在厘米长的等离子体中对该注入方案的实验观察,导致生成了窄的能量扩散GeV电子束,证明了其稳健性和可扩展性。与自注入和双阶段方案相比,自截断电离注入以较低的强度和密度生成更高质量的电子束,因此有望用于实际应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号