首页> 美国卫生研究院文献>Scientific Reports >Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions
【2h】

Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions

机译:钠钙玻璃上自发性强多层石墨烯的n掺杂及其在石墨烯-半导体结中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Scalable and low-cost doping of graphene could improve technologies in a wide range of fields such as microelectronics, optoelectronics, and energy storage. While achieving strong p-doping is relatively straightforward, non-electrostatic approaches to n-dope graphene, such as chemical doping, have yielded electron densities of 9.5 × 1012 e/cm2 or below. Furthermore, chemical doping is susceptible to degradation and can adversely affect intrinsic graphene’s properties. Here we demonstrate strong (1.33 × 1013 e/cm2), robust, and spontaneous graphene n-doping on a soda-lime-glass substrate via surface-transfer doping from Na without any external chemical, high-temperature, or vacuum processes. Remarkably, the n-doping reaches 2.11 × 1013 e/cm2 when graphene is transferred onto a p-type copper indium gallium diselenide (CIGS) semiconductor that itself has been deposited onto soda-lime-glass, via surface-transfer doping from Na atoms that diffuse to the CIGS surface. Using this effect, we demonstrate an n-graphene/p-semiconductor Schottky junction with ideality factor of 1.21 and strong photo-response. The ability to achieve strong and persistent graphene n-doping on low-cost, industry-standard materials paves the way toward an entirely new class of graphene-based devices such as photodetectors, photovoltaics, sensors, batteries, and supercapacitors.
机译:可扩展且低成本的石墨烯掺杂可以改善微电子,光电子和能量存储等广泛领域的技术。尽管实现强p掺杂相对简单,但化学方法等非静电方法可用于n掺杂石墨烯,其电子密度为9.5×10 12 e / cm 2 或以下。此外,化学掺杂容易降解,并且可能对石墨烯的固有性能产生不利影响。在这里,我们证明了通过表面转移掺杂在钠钙玻璃衬底上的强(1.33×10 13 e / cm 2 ),坚固且自发的石墨烯n掺杂由Na制成,无需任何外部化学,高温或真空处理。值得注意的是,当石墨烯转移到本身已经被氧化的p型铜铟镓二硒(CIGS)半导体上时,n掺杂达到2.11××10 13 e / cm 2 通过从扩散到CIGS表面的Na原子进行表面转移掺杂而沉积到钠钙玻璃上。利用这种效应,我们证明了理想因子为1.21且光响应强的n-石墨烯/ p半导体肖特基结。在低成本,行业标准的材料上实现强而持久的石墨烯n掺杂的能力为全新的基于石墨烯的设备(例如光电探测器,光伏,传感器,电池和超级电容器)铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号