首页> 美国卫生研究院文献>Proceedings. Mathematical Physical and Engineering Sciences >Recent advances in experimental techniques to probe fast excited-state dynamics in biological molecules in the gas phase: dynamics in nucleotides amino acids and beyond
【2h】

Recent advances in experimental techniques to probe fast excited-state dynamics in biological molecules in the gas phase: dynamics in nucleotides amino acids and beyond

机译:探测气相中生物分子中快速激发态动力学的实验技术的最新进展:核苷酸氨基酸等的动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In many chemical reactions, an activation barrier must be overcome before a chemical transformation can occur. As such, understanding the behaviour of molecules in energetically excited states is critical to understanding the chemical changes that these molecules undergo. Among the most prominent reactions for mankind to understand are chemical changes that occur in our own biological molecules. A notable example is the focus towards understanding the interaction of DNA with ultraviolet radiation and the subsequent chemical changes. However, the interaction of radiation with large biological structures is highly complex, and thus the photochemistry of these systems as a whole is poorly understood. Studying the gas-phase spectroscopy and ultrafast dynamics of the building blocks of these more complex biomolecules offers the tantalizing prospect of providing a scientifically intuitive bottom-up approach, beginning with the study of the subunits of large polymeric biomolecules and monitoring the evolution in photochemistry as the complexity of the molecules is increased. While highly attractive, one of the main challenges of this approach is in transferring large, and in many cases, thermally labile molecules into vacuum. This review discusses the recent advances in cutting-edge experimental methodologies, emerging as excellent candidates for progressing this bottom-up approach.
机译:在许多化学反应中,必须先克服活化障碍,然后才能发生化学转化。因此,了解处于能量激发态的分子的行为对于理解这些分子经历的化学变化至关重要。人类最了解的最重要反应是发生在我们自己的生物分子中的化学变化。一个著名的例子是致力于了解DNA与紫外线辐射以及随后的化学变化之间的相互作用。然而,辐射与大型生物结构的相互作用非常复杂,因此对这些系统的光化学整体了解甚少。研究这些更复杂的生物分子的组成部分的气相光谱和超快动力学提供了一种诱人的前景,即提供科学直观的自下而上的方法,首先是研究大型聚合物生物分子的亚基并监测光化学的演化。分子的复杂性增加了。尽管这种方法具有很高的吸引力,但该方法的主要挑战之一是将热不稳定的大分子转移到真空中。这篇评论讨论了前沿实验方法的最新进展,这些进展是推进这种自下而上方法的极好候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号