首页> 美国卫生研究院文献>Materials >Modeling the Non-Equilibrium Process of the Chemical Adsorption of Ammonia on GaN(0001) Reconstructed Surfaces Based on Steepest-Entropy-Ascent Quantum Thermodynamics
【2h】

Modeling the Non-Equilibrium Process of the Chemical Adsorption of Ammonia on GaN(0001) Reconstructed Surfaces Based on Steepest-Entropy-Ascent Quantum Thermodynamics

机译:基于最陡熵上升量子热力学模拟氨在GaN(0001)重构表面上化学吸附的非平衡过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Clearly understanding elementary growth processes that depend on surface reconstruction is essential to controlling vapor-phase epitaxy more precisely. In this study, ammonia chemical adsorption on GaN(0001) reconstructed surfaces under metalorganic vapor phase epitaxy (MOVPE) conditions (3Ga-H and Nad-H + Ga-H on a 2 × 2 unit cell) is investigated using steepest-entropy-ascent quantum thermodynamics (SEAQT). SEAQT is a thermodynamic-ensemble based, first-principles framework that can predict the behavior of non-equilibrium processes, even those far from equilibrium where the state evolution is a combination of reversible and irreversible dynamics. SEAQT is an ideal choice to handle this problem on a first-principles basis since the chemical adsorption process starts from a highly non-equilibrium state. A result of the analysis shows that the probability of adsorption on 3Ga-H is significantly higher than that on Nad-H + Ga-H. Additionally, the growth temperature dependence of these adsorption probabilities and the temperature increase due to the heat of reaction is determined. The non-equilibrium thermodynamic modeling applied can lead to better control of the MOVPE process through the selection of preferable reconstructed surfaces. The modeling also demonstrates the efficacy of DFT-SEAQT coupling for determining detailed non-equilibrium process characteristics with a much smaller computational burden than would be entailed with mechanics-based, microscopic-mesoscopic approaches.
机译:清楚地了解依赖于表面重建的基本生长过程对于更精确地控制气相外延至关重要。在这项研究中,研究了在金属有机气相外延(MOVPE)条件下(2×2晶胞上的3Ga-H和Nad-H + Ga-H)氨对GaN(0001)重建表面的化学吸附,方法是使用最陡熵-上升量子热力学(SEAQT)。 SEAQT是一个基于热力学集合的第一性原理框架,可以预测非平衡过程的行为,甚至可以预测那些远离平衡的状态(状态演化是可逆和不可逆动力学的组合)。 SEAQT是从第一原理上解决这个问题的理想选择,因为化学吸附过程从高度不平衡状态开始。分析结果表明,在3Ga-H上的吸附概率明显高于在Nad-H + Ga-H上的吸附概率。另外,确定了这些吸附概率的生长温度依赖性以及由于反应热引起的温度升高。所应用的非平衡热力学建模可以通过选择首选的重构表面来更好地控制MOVPE过程。该模型还证明了DFT-SEAQT耦合在确定详细的非平衡过程特征方面的功效,其计算量比基于机械的微观介观方法所需的计算量小得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号