首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Metabolic Engineering of Glycerol Production in Saccharomyces cerevisiae
【2h】

Metabolic Engineering of Glycerol Production in Saccharomyces cerevisiae

机译:酿酒酵母中甘油生产的代谢工程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Inactivation of TPI1, the Saccharomyces cerevisiae structural gene encoding triose phosphate isomerase, completely eliminates growth on glucose as the sole carbon source. In tpi1-null mutants, intracellular accumulation of dihydroxyacetone phosphate might be prevented if the cytosolic NADH generated in glycolysis by glyceraldehyde-3-phosphate dehydrogenase were quantitatively used to reduce dihydroxyacetone phosphate to glycerol. We hypothesize that the growth defect of tpi1-null mutants is caused by mitochondrial reoxidation of cytosolic NADH, thus rendering it unavailable for dihydroxyacetone-phosphate reduction. To test this hypothesis, a tpi1Δ nde1Δ nde2Δ gut2Δ quadruple mutant was constructed. NDE1 and NDE2 encode isoenzymes of mitochondrial external NADH dehydrogenase; GUT2 encodes a key enzyme of the glycerol-3-phosphate shuttle. It has recently been demonstrated that these two systems are primarily responsible for mitochondrial oxidation of cytosolic NADH in S. cerevisiae. Consistent with the hypothesis, the quadruple mutant grew on glucose as the sole carbon source. The growth on glucose, which was accompanied by glycerol production, was inhibited at high-glucose concentrations. This inhibition was attributed to glucose repression of respiratory enzymes as, in the quadruple mutant, respiratory pyruvate dissimilation is essential for ATP synthesis and growth. Serial transfer of the quadruple mutant on high-glucose media yielded a spontaneous mutant with much higher specific growth rates in high-glucose media (up to 0.10 h−1 at 100 g of glucose · liter−1). In aerated batch cultures grown on 400 g of glucose · liter−1, this engineered S. cerevisiae strain produced over 200 g of glycerol · liter−1, corresponding to a molar yield of glycerol on glucose close to unity.
机译:TPI1的失活,即酿酒酵母的结构化基因,编码磷酸三糖异构酶,完全消除了葡萄糖作为唯一碳源的生长。在tpi1-null突变体中,如果定量地使用3-磷酸甘油醛脱氢酶在糖酵解中产生的胞质NADH定量地将磷酸二羟基丙酮还原为甘油,则可以防止磷酸二羟基丙酮的细胞内积累。我们假设tpi1-null突变体的生长缺陷是由胞质NADH的线粒体再氧化引起的,因此无法用于磷酸二羟基丙酮的还原。为了检验该假设,构建了tpi1Δnde1Δnde2Δgut2Δ四重突变体。 NDE1和NDE2编码线粒体外部NADH脱氢酶的同工酶; GUT2编码3-磷酸甘油梭的关键酶。最近已证明这两个系统主要负责酿酒酵母中线粒体氧化胞质中的NADH。与该假设一致,四倍体突变体以葡萄糖作为唯一碳源生长。在高葡萄糖浓度下,伴随着甘油生成的葡萄糖生长受到抑制。这种抑制作用归因于呼吸酶的葡萄糖抑制,因为在四重突变体中,呼吸丙酮酸异化对于ATP的合成和生长至关重要。四倍体突变体在高糖培养基上的连续转移产生了一个自发突变体,在高糖培养基中具有更高的比生长速率(在100 g葡萄糖··升时高达0.10 h -1 -1 )。在400 g葡萄糖/升/升 -1 上充气的分批培养中,该工程酿酒酵母菌株产生了200 g甘油/升/升 -1 ,相当于一摩尔甘油对葡萄糖的产量接近于单位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号