首页> 美国卫生研究院文献>Biomicrofluidics >A new microfluidic device design for a defined positioning of neurons in vitro
【2h】

A new microfluidic device design for a defined positioning of neurons in vitro

机译:一种新的微流控设备设计用于体外定义神经元定位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new triangle-shaped microfluidic channel system for defined cell trapping is presented. Different variants of the same basic geometry were produced to reveal the best fitting parameter combinations regarding efficiency and sensitivity. Variants with differences in the trap gap width and the inter-trap distance were analyzed in detail by Computational Fluid Dynamics simulations and in experiments with artificial beads of different sizes (30, 60, 80 μm). Simulation analysis of flow dynamics and pressure profiles revealed strongly reduced pressure conditions and balanced flow rates inside the microfluidic channels compared to commonly used systems with meandering channels. Quantitative experiments with beads showed very good trapping results in all channel types with slight variations due to geometrical differences. Highest efficiency in terms of fast trap filling and low particle loss was shown with channel types having a larger trap gap width (20 μm) and/or a larger inter-trap distance (400 μm). Here, experimental success was achieved in almost 85% to 100% of all cases. Particle loss appeared significantly more often with large beads than with small beads. A significantly reduced trapping efficiency of about 50% was determined by using narrow trap gaps and a small inter-trap distance in combination with large 80 μm beads. The combination of the same parameters with small and medium beads led to an only slight decrease in trapping efficiency (80%). All channel types were tested qualitatively with invertebrate neurons from the pond snail Lymnaea stagnalis. The systems were appropriate to trap those sensitive neurons and to keep their viability in the trapping area at the same time.
机译:提出了一种新的三角形微流体通道系统,用于定义细胞捕获。产生了相同基本几何形状的不同变体,以揭示关于效率和灵敏度的最佳拟合参数组合。通过计算流体动力学模拟以及在使用不同大小(30、60、80μm)的人造珠子的实验中,详细分析了阱间隙宽度和阱间距离差异的变化。流动动力学和压力曲线的仿真分析显示,与常用的带有曲折通道的系统相比,微流体通道内部的压力条件大大降低,流量均衡。珠子的定量实验显示,在所有通道类型中,由于几何差异而导致的捕获效果非常好,但变化很小。通道类型具有更大的阱间隙宽度(20μm)和/或更大的阱间距离(400μm),在快速捕集阱填充和低颗粒损失方面表现出最高效率。在这里,几乎所有案例中的85%到100%都获得了实验成功。大颗粒比小颗粒明显更多地出现颗粒损失。通过使用狭窄的捕集间隙和较小的捕集间距,结合使用80μμm的大颗粒,可以显着降低捕集效率,约为50%。相同参数与中小珠的组合导致捕获效率仅略微降低(80%)。所有通道类型均使用来自池蜗牛胸腺的无脊椎动物神经元进行了定性测试。该系统适用于捕获那些敏感的神经元,并同时在捕获区域保持其生存能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号