首页> 美国卫生研究院文献>Biophysical Journal >Molecular Mechanisms that Regulate the Coupled Period of the Mammalian Circadian Clock
【2h】

Molecular Mechanisms that Regulate the Coupled Period of the Mammalian Circadian Clock

机译:调控哺乳动物昼夜节律时钟耦合期的分子机制。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In mammals, most cells in the brain and peripheral tissues generate circadian (∼24 h) rhythms autonomously. These self-sustained rhythms are coordinated and entrained by a master circadian clock in the suprachiasmatic nucleus (SCN). Within the SCN, the individual rhythms of each neuron are synchronized through intercellular signaling. One important feature of SCN is that the synchronized period is close to the population mean of cells’ intrinsic periods. In this way, the synchronized period of the SCN stays close to the periods of cells in peripheral tissues. This is important because the SCN must entrain cells throughout the body. However, the mechanism that drives the period of the coupled SCN cells to the population mean is not known. We use mathematical modeling and analysis to show that the mechanism of transcription repression in the intracellular feedback loop plays a pivotal role in regulating the coupled period. Specifically, we use phase response curve analysis to show that the coupled period within the SCN stays near the population mean if transcriptional repression occurs via protein sequestration. In contrast, the coupled period is far from the mean if repression occurs through highly nonlinear Hill-type regulation (e.g., oligomer- or phosphorylation-based repression), as widely assumed in previous mathematical models. Furthermore, we find that the timescale of intercellular coupling needs to be fast compared to that of intracellular feedback to maintain the mean period. These findings reveal the important relationship between the intracellular transcriptional feedback loop and intercellular coupling. This relationship explains why transcriptional repression appears to occur via protein sequestration in multicellular organisms, mammals, and Drosophila, in contrast with the phosphorylation-based repression in unicellular organisms and syncytia. That is, transition to protein sequestration is essential for synchronizing multiple cells with a period close to the population mean (∼24 h).
机译:在哺乳动物中,大脑和周围组织中的大多数细胞会自动产生昼夜节律(约24小时)。这些自我维持的节律由视交叉上核(SCN)中的生物钟主时钟协调和带动。在SCN中,每个神经元的个体节律通过细胞间信号传导而同步。 SCN的重要特征之一是同步周期接近细胞固有周期的总体均值。通过这种方式,SCN的同步周期保持在外围组织中的细胞周期附近。这很重要,因为SCN必须带走整个身体的细胞。但是,将耦合的SCN细胞的周期驱动到总体平均值的机制尚不清楚。我们使用数学建模和分析表明,细胞内反馈回路中转录阻抑的机制在调节耦合期中起着关键作用。具体而言,我们使用相位响应曲线分析来显示,如果通过蛋白螯合发生转录抑制,则SCN内的耦合期保持在种群平均值附近。相反,如先前数学模型中广泛假设的,如果通过高度非线性的Hill型调节(例如,基于低聚物或磷酸化的抑制作用)进行抑制作用,则耦合期与平均值相差甚远。此外,我们发现与细胞内反馈相比,细胞间偶联的时间尺度需要更快,以维持平均周期。这些发现揭示了细胞内转录反馈环与细胞间偶联之间的重要关系。这种关系解释了为什么在多细胞生物,哺乳动物和果蝇中通过蛋白质螯合似乎会发生转录抑制,而在单细胞生物和合胞体中则是基于磷酸化的抑制。也就是说,过渡到蛋白质螯合对于同步多个细胞具有接近种群平均值(约24小时)的周期至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号