首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Confined in-fiber solidification and structural control of silicon and silicon−germanium microparticles
【2h】

Confined in-fiber solidification and structural control of silicon and silicon−germanium microparticles

机译:硅和硅锗微粒的局限性纤维内固化和结构控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Crystallization of microdroplets of molten alloys could, in principle, present a number of possible morphological outcomes, depending on the symmetry of the propagating solidification front and its velocity, such as axial or spherically symmetric species segregation. However, because of thermal or constitutional supercooling, resulting droplets often only display dendritic morphologies. Here we report on the crystallization of alloyed droplets of controlled micrometer dimensions comprising silicon and germanium, leading to a number of surprising outcomes. We first produce an array of silicon−germanium particles embedded in silica, through capillary breakup of an alloy-core silica-cladding fiber. Heating and subsequent controlled cooling of individual particles with a two-wavelength laser setup allows us to realize two different morphologies, the first being a silicon−germanium compositionally segregated Janus particle oriented with respect to the illumination axis and the second being a sphere made of dendrites of germanium in silicon. Gigapascal-level compressive stresses are measured within pure silicon solidified in silica as a direct consequence of volume-constrained solidification of a material undergoing anomalous expansion. The ability to generate microspheres with controlled morphology and unusual stresses could pave the way toward advanced integrated in-fiber electronic or optoelectronic devices.
机译:熔融合金微滴的结晶原则上可以呈现出许多可能的形态结果,这取决于传播的凝固前沿及其速度的对称性,例如轴向或球形对称的物种偏析。然而,由于热或组织过冷,所产生的液滴通常仅显示出树枝状形态。在这里,我们报告了包含硅和锗的可控微米尺寸的合金滴的结晶,导致了许多令人惊讶的结果。我们首先通过合金芯氧化硅包层纤维的毛细管破裂,产生了嵌入在二氧化硅中的硅锗颗粒阵列。使用两波长激光装置对单个粒子进行加热和随后的受控冷却,使我们能够实现两种不同的形态,第一种是相对于照明轴定向的硅锗成分分离的Janus粒子,第二种是由树枝状晶体制成的球体硅中的锗。在二氧化硅中凝固的纯硅中测量了千兆帕斯卡级的压缩应力,这是由于受到异常膨胀的材料的体积受约束的凝固的直接结果。产生具有受控形态和异常应力的微球的能力可以为高级集成光纤电子或光电设备铺平道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号