首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >An Evaluation of the Accuracy of Classical Models for Computing the Membrane Potential and Extracellular Potential for Neurons
【2h】

An Evaluation of the Accuracy of Classical Models for Computing the Membrane Potential and Extracellular Potential for Neurons

机译:计算神经元的膜电位和细胞外电位的经典模型的准确性的评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Two mathematical models are part of the foundation of Computational neurophysiology; (a) the Cable equation is used to compute the membrane potential of neurons, and, (b) volume-conductor theory describes the extracellular potential around neurons. In the standard procedure for computing extracellular potentials, the transmembrane currents are computed by means of (a) and the extracellular potentials are computed using an explicit sum over analytical point-current source solutions as prescribed by volume conductor theory. Both models are extremely useful as they allow huge simplifications of the computational efforts involved in computing extracellular potentials. However, there are more accurate, though computationally very expensive, models available where the potentials inside and outside the neurons are computed simultaneously in a self-consistent scheme. In the present work we explore the accuracy of the classical models (a) and (b) by comparing them to these more accurate schemes. The main assumption of (a) is that the ephaptic current can be ignored in the derivation of the Cable equation. We find, however, for our examples with stylized neurons, that the ephaptic current is comparable in magnitude to other currents involved in the computations, suggesting that it may be significant—at least in parts of the simulation. The magnitude of the error introduced in the membrane potential is several millivolts, and this error also translates into errors in the predicted extracellular potentials. While the error becomes negligible if we assume the extracellular conductivity to be very large, this assumption is, unfortunately, not easy to justify a priori for all situations of interest.
机译:两种数学模型是计算神经生理学基础的一部分。 (a)Cable方程用于计算神经元的膜电位,(b)体积导体理论描述神经元周围的细胞外电位。在用于计算细胞外电位的标准程序中,通过(a)计算跨膜电流,并使用体积导体理论所规定的分析点电流源溶液上的显式总和来计算细胞外电位。两种模型都非常有用,因为它们可以极大地简化计算细胞外电位所涉及的计算工作。但是,存在更精确的模型,尽管计算量很大,但可以以自洽的方式同时计算神经元内部和外部的电位。在当前的工作中,我们通过将经典模型(a)和(b)与这些更精确的方案进行比较来探索它们的准确性。 (a)的主要假设是,在推导Cable方程时,可以忽略盲电流。但是,对于带有程式化神经元的示例,我们发现,神经元电流的大小可与计算中涉及的其他电流相比较,这表明它可能是重要的-至少在部分模拟中如此。引入到膜电位中的误差的大小为几毫伏,并且该误差还转化为预测的细胞外电位的误差。如果我们假设细胞外电导率非常大,则误差可以忽略不计,但是不幸的是,对于所有感兴趣的情况,这种假设都不容易为先验辩护。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号