首页> 美国卫生研究院文献>Frontiers in Microbiology >Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry
【2h】

Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry

机译:微生物加速油砂尾矿的固结。途径二:固相生物地球化学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators.
机译:在含水尾矿悬浮液中固结粘土颗粒是有效管理加拿大艾伯塔省北部油砂尾矿池的主要障碍。我们已经观察到尾矿池中固有的微生物通过使用两种生物地球化学途径在新陈代谢过程中加速了成熟细尾矿(MFT)的整合。在途径I中,微生物会改变孔隙水的化学性质,从而间接增加MFT的固结。在这里,我们描述了途径II,该途径包括与MFT矿物表面的明显,直接和互补的生物地球化学反应。一个厌氧微生物群落,包括细菌(主要是梭菌,增效科和脱硫球形科)和古细菌(甲醇/甲藻和甲烷菌)将MFT中的Fe III 矿物转化为无定形的Fe II 矿物。添加的有机底物的甲烷生成代谢。同步加速器分析表明,MFT中铁水合物(5Fe2O3。9H2O)和针铁矿(α-FeO​​OH)是主要的Fe III 矿物。修正的MFT中无定形硫化铁(FeS)的形成以及可能的绿锈包裹并掩盖了负电粘土表面。路径I和路径II均降低了MFT中粘土颗粒的表面电荷电势(排斥力),这有助于粘土的聚集和孔网络的形成,如使用低温扫描电子显微镜(SEM)所见。这些反应促进了MFT排出孔隙水,并增加了尾矿固体的固结。这些结果对油砂尾矿池的管理和回收产生了广泛的影响,这对于公共和政府监管机构而言是一个新兴的环境问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号