首页> 美国卫生研究院文献>Frontiers in Neuroinformatics >Automatically Selecting a Suitable Integration Scheme for Systems of Differential Equations in Neuron Models
【2h】

Automatically Selecting a Suitable Integration Scheme for Systems of Differential Equations in Neuron Models

机译:为神经元模型中的微分方程系统自动选择合适的积分方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

On the level of the spiking activity, the integrate-and-fire neuron is one of the most commonly used descriptions of neural activity. A multitude of variants has been proposed to cope with the huge diversity of behaviors observed in biological nerve cells. The main appeal of this class of model is that it can be defined in terms of a hybrid model, where a set of mathematical equations describes the sub-threshold dynamics of the membrane potential and the generation of action potentials is often only added algorithmically without the shape of spikes being part of the equations. In contrast to more detailed biophysical models, this simple description of neuron models allows the routine simulation of large biological neuronal networks on standard hardware widely available in most laboratories these days. The time evolution of the relevant state variables is usually defined by a small set of ordinary differential equations (ODEs). A small number of evolution schemes for the corresponding systems of ODEs are commonly used for many neuron models, and form the basis of the neuron model implementations built into commonly used simulators like Brian, NEST and NEURON. However, an often neglected problem is that the implemented evolution schemes are only rarely selected through a structured process based on numerical criteria. This practice cannot guarantee accurate and stable solutions for the equations and the actual quality of the solution depends largely on the parametrization of the model. In this article, we give an overview of typical equations and state descriptions for the dynamics of the relevant variables in integrate-and-fire models. We then describe a formal mathematical process to automate the design or selection of a suitable evolution scheme for this large class of models. Finally, we present the reference implementation of our symbolic analysis toolbox for ODEs that can guide modelers during the implementation of custom neuron models.
机译:在尖峰活动的水平上,整合并发射神经元是神经活动最常用的描述之一。已经提出了多种变体来应对在生物神经细胞中观察到的多种行为。此类模型的主要吸引力在于,可以根据混合模型进行定义,在该模型中,一组数学方程式描述了膜电位的亚阈值动力学,而动作电位的生成通常仅通过算法添加而无需尖峰的形状是方程式的一部分。与更详细的生物物理模型相反,对神经元模型的这种简单描述允许在当今大多数实验室中广泛使用的标准硬件上对大型生物神经元网络进行常规仿真。相关状态变量的时间演变通常由一小组常微分方程(ODE)定义。相应的ODE系统的少数进化方案通常用于许多神经元模型,并构成内置于常用仿真器(如Brian,NEST和NEURON)中的神经元模型实现的基础。然而,一个经常被忽视的问题是,很少通过基于数值标准的结构化过程来选择实施的进化方案。这种做法不能保证方程的准确和稳定解,并且解的实际质量在很大程度上取决于模型的参数化。在本文中,我们概述了集成点火模型中相关变量的动力学的典型方程式和状态描述。然后,我们描述一种正式的数学过程,以自动化针对此类大型模型的设计或选择合适的演化方案。最后,我们介绍了用于ODE的符号分析工具箱的参考实现,可以在自定义神经元模型的实现过程中指导建模人员。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号