首页> 中文期刊> 《稀有金属:英文版》 >Hot deformation behavior and constitutive model of TC18 alloy during compression

Hot deformation behavior and constitutive model of TC18 alloy during compression

         

摘要

The hot deformation behavior of TC18 alloy at strain rates ranging from 1 9 10-4to 1 9 10-2s-1and temperatures ranging from 25 to 800 °C was studied using a WDW-300 electronic universal testing machine. The relationships between true stress and true strain show that flow stress decreases with the increase of temperature and increases as strain rate increases. The effect of strain rate on the flow stress becomes pronounced at higher temperatures. At room temperature, the river pattern characteristic of brittle fracture and the dimple pattern typical of ductile fracture are found to exist in different regions of fracture surfaces of the samples. An improved constitutive relationship is proposed to accurately describe the flow stress of TC18 by considering the effect of strain. And a microscopic model is also deduced which can link the physical mechanisms to the macroscopic experimental results. A good agreement is obtained between the predictions of the microscopic model and the results of the macroscopic experiment.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号