首页> 中文期刊>地震工程与工程振动:英文版 >Delay-dependent stability and added damping of SDOF real-time dynamic hybrid testing

Delay-dependent stability and added damping of SDOF real-time dynamic hybrid testing

     

摘要

It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT).This paper focuses on the delay-dependent stability and added damping of SDOF systems in RTDHT.The exponential delay term is transferred into a rational fraction by the Padé approximation, and the delay-dependent stability conditions and instability mechanism of SDOF RTDHT systems are investigated by the root locus technique.First, the stability conditions are discussed separately for the cases of stiffness, mass, and damping experimental substructure.The use of root locus plots shows that the added damping effect and instability mechanism for mass are different from those for stiffness.For the stiffness experimental substructure case, the instability results from the inherent mode because of an obvious negative damping effect of the delay.For the mass case, the delay introduces an equivalent positive damping into the inherent mode, and instability occurs at an added high frequency mode.Then, the compound stability condition is investigated for a general case and the results show that the mass ratio may have both upper and lower limits to remain stable.Finally, a high-emulational virtual shaking table model is built to validate the stability conclusions.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号