首页> 外文学位 >Feedforward control approach to precision trajectory design and tracking: Theory and application to nano-mechanical property mapping using Scanning Probe Microscope.
【24h】

Feedforward control approach to precision trajectory design and tracking: Theory and application to nano-mechanical property mapping using Scanning Probe Microscope.

机译:精确轨迹设计和跟踪的前馈控制方法:使用扫描探针显微镜在纳米机械特性映射中的理论和应用。

获取原文
获取原文并翻译 | 示例

摘要

The output tracking problem has been extensively studied. The linear system case has been addressed by B. A. Francis (1976) by converting the tracking problem to a regulator problem. Such an approach was later extended to nonlinear systems by A. Isidori et al. (1990). On the feedforward control side, the stable inversion theory solved the challenging output tracking problem and achieved exact tracking of a given desired output trajectory for nonminimum phase systems (linear and nonlinear). The obtained solution is noncausal and requires the entire desired trajectory to be known a priori. This noncausality constraint has been alleviated through the development of the preview-based inversion approach, which showed the precision tracking can be achieved with a finite preview of the future desired trajectory, and the effect of the limited future trajectory information on output tracking can be quantified. Moreover, optimal scan trajectory design and control method provided a systematic approach to the optimal output-trajectory-design problem, where the output trajectory is repetitive and composed of pre-specified trajectory and unspecified trajectory for transition that returns from ending point to starting point in a given time duration.;This dissertation focuses on the development of novel inversion-based feedforward control technique, with applications to output tracking problem with tracking and transition switchings, possibly non-repetitive. The motivate application examples come from atomic force microscope (AFM) imaging and material property measurements. The raster scanning process of AFM and optimal scan trajectory design and control method inspired the repetitive output trajectory tracking problem and attempt to solve in frequency domain. For the output tracking problem, especially for the AFM, there are several issues that have to be addressed. At first, the shape of the desired trajectory must be designed and optimized. Optimal output-trajectory-design problem provided a systematic approach to design the desired trajectory by minimizing the total input energy. However, the drawback is that the desired trajectory becomes very oscillatory when the system dynamics such as the dynamics of the piezoelectric actuator in AFM is lightly damped. Output oscillations need to be small in scanning operations of the AFM. In this dissertation, this problem is addressed through the pre-filter design in the optimal scan trajectory design and tracking framework, so that the trade off between the input energy and the output energy in the optimization is achieved. Secondly, the dissertation addressed the adverse effect of modeling error on the performance of feedforward control. For example, modeling errors can be caused in process of curve fitting.;The contribution of this dissertation is the development of novel inversion based feedforward control techniques. Based on the inversion-based iterative learning control (S. Tien et al. (2005)) technique, the dissertation developed enhanced inversion-based iterative control and the model-less inversion-based iterative control. The convergence of the iterative control law is discussed, and the frequency range of the convergence as well as the effect of the disturbance/noise to signal ratio is quantified. The proposed approach is illustrated by implementing them to high-speed force-distance curve measurements by using atomic force microscope (AFM). Then the control approach is extended to high-speed force-volume mapping. In high-speed force-volume mapping, the proposed approach utilizes the concept of signal decoupling-superimposition and the recently-developed model-less inversion-based iterative control (MIIC) technique. Experiment of force-volume mapping on a Poly-dimethylsiloxane (PDMS) sample is presented to illustrate the proposed approach. The experimental results show that the mapping speed can be increased by over 20 times.
机译:输出跟踪问题已被广泛研究。 B. A. Francis(1976)通过将跟踪问题转换为调节器问题来解决线性系统问题。后来,A。Isidori等人将这种方法扩展到非线性系统。 (1990)。在前馈控制方面,稳定的反演理论解决了具有挑战性的输出跟踪问题,并实现了针对非最小相位系统(线性和非线性)的给定所需输出轨迹的精确跟踪。所获得的解决方案是无因的,并且需要先验地知道整个期望的轨迹。通过基于预览的反演方法的开发,减轻了这种非因果性约束,这表明可以通过对未来所需轨迹的有限预览来实现精度跟踪,并且可以量化有限的未来轨迹信息对输出跟踪的影响。此外,最优的扫描轨迹设计和控制方法为最优的输出轨迹设计问题提供了系统的方法,其中输出轨迹是重复的,由预先指定的轨迹和未指定的轨迹组成,过渡从终点到起点返回。本文主要研究基于反转的新型前馈控制技术的发展,并将其应用于具有跟踪和过渡切换的输出跟踪问题,可能是非重复的。激励应用示例来自原子力显微镜(AFM)成像和材料性能测量。原子力显微镜的光栅扫描过程以及最优的扫描轨迹设计和控制方法激发了重复的输出轨迹跟踪问题,并试图在频域上解决。对于输出跟踪问题,尤其是对于AFM,必须解决几个问题。首先,必须设计和优化所需轨迹的形状。最佳输出轨迹设计问题提供了一种系统方法,可通过使总输入能量最小化来设计所需轨迹。但是,缺点是当系统动力学(例如AFM中的压电致动器的动力学)受到轻微阻尼时,所需的轨迹变得非常振荡。在AFM的扫描操作中,输出振荡必须很小。本文通过在最优扫描轨迹设计和跟踪框架中进行预滤波器设计,解决了该问题,从而实现了优化过程中输入能量和输出能量之间的权衡。其次,本文解决了建模误差对前馈控制性能的不利影响。例如,在曲线拟合过程中可能会引起建模误差。论文的贡献是基于反演的前馈控制技术的发展。基于基于反演的迭代学习控制(S. Tien et al。(2005))技术,本文开发了增强的基于反演的迭代控制和基于无模型的反演迭代控制。讨论了迭代控制律的收敛性,并对收敛的频率范围以及干扰/噪声对信噪比的影响进行了量化。通过使用原子力显微镜(AFM)将其实现为高速力-距离曲线测量来说明所提出的方法。然后将控制方法扩展到高速力-体积映射。在高速力-体积映射中,所提出的方法利用了信号去耦叠加和最新开发的基于无模型的基于反演的迭代控制(MIIC)技术。提出了在聚二甲基硅氧烷(PDMS)样品上进行力-体积映射的实验,以说明该方法。实验结果表明,映射速度可以提高20倍以上。

著录项

  • 作者

    Kim, Kyongsoo.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号