首页> 外文学位 >Quantum coherence and entanglement control for atom-cavity systems.
【24h】

Quantum coherence and entanglement control for atom-cavity systems.

机译:原子腔系统的量子相干和纠缠控制。

获取原文
获取原文并翻译 | 示例

摘要

Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement.;We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes.;We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have consistently solved the control dynamics of open quantum systems using this stochastic QSD approach. By implementing the QSD equation, our numerical results have revealed that how the control efficacy depends on the designed time points and shapes of the applied control pulses, and the environment memory time scale.
机译:相干和纠缠在量子理论中起着重要作用。与外界“封闭”的理想量子系统将永远保持量子状态,从而设法保持相干和纠缠。但是,实际的量子系统对环境开放,因此易受去相干和解缠结现象的影响,这是量子信息处理任务有效性的主要障碍。在本文中,我们从理论上研究了耦合到各种环境的量子系统中相干和纠缠的演化。我们还研究了控制相干和纠缠衰减的方法和手段。我们研究了一些有趣的初始状态与分别包含零个光子,一个光子,两个光子和许多光子的高Q腔耦合的精确qubit纠缠动力学。 。我们发现,最初相关的环境状态可以充当纠缠衰减或生成过程的增强器。更确切地说,我们已经证明,纠缠程度(包括其崩溃及其恢复时间)可以通过环境模式的相关结构得到显着修改。;我们还研究了动态解耦(DD)技术-开放量子系统中控制相干和保留纠缠的杰出策略。我们分析了几种应用于量子比特系统的DD控制方法,这些方法可以消除系统与环境的耦合并延长量子相干时间。特别是,我们提出了一种新的DD序列,该序列由一组设计的控制算子组成,可以普遍保护未知的qutrit状态免受有色相位和幅度环境噪声的影响。此外,在非马尔可夫体系中,我们重新制定了量子态扩散(QSD)方程,以纳入外部控制场的影响。在没有任何关于系统-环境耦合和环境大小的假设的情况下,我们已经使用这种随机QSD方法一致地解决了开放量子系统的控制动力学问题。通过执行QSD方程,我们的数值结果表明,控制效力如何取决于设计的时间点和所施加的控制脉冲的形状以及环境记忆的时间尺度。

著录项

  • 作者

    Shu, Wenchong.;

  • 作者单位

    Stevens Institute of Technology.;

  • 授予单位 Stevens Institute of Technology.;
  • 学科 Physics Quantum.;Physics Theory.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号