首页> 外文学位 >Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification.
【24h】

Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification.

机译:具有燃料分层功能的汽油压缩点火发动机的基本相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Transportation accounted for 28% of the total U.S. energy demand in 2011, with 93% of U.S. transportation energy coming from petroleum. The large impact of the transportation sector on global climate change necessitates more-efficient, cleaner-burning internal combustion engine operating strategies. One such strategy that has received substantial research attention in the last decade is Homogeneous Charge Compression Ignition (HCCI). Although the efficiency and emissions benefits of HCCI are well established, practical limits on the operating range of HCCI engines have inhibited their application in consumer vehicles. One such limit is at high load, where the pressure rise rate in the combustion chamber becomes excessively large.;Fuel stratification is a potential strategy for reducing the maximum pressure rise rate in HCCI engines. The aim is to introduce reactivity gradients through fuel stratification to promote sequential auto-ignition rather than a bulk-ignition, as in the homogeneous case. A gasoline-fueled compression ignition engine with fuel stratification is termed a Gasoline Compression Ignition (GCI) engine. Although a reasonable amount of experimental research has been performed for fuel stratification in GCI engines, a clear understanding of how the fundamental in-cylinder processes of fuel spray evaporation, mixing, and heat release contribute to the observed phenomena is lacking. Of particular interest is gasoline's pressure sensitive low-temperature chemistry and how it impacts the sequential auto-ignition of the stratified charge.;In order to computationally study GCI with fuel stratification using three-dimensional computational fluid dynamics (CFD) and chemical kinetics, two reduced mechanisms have been developed. The reduced mechanisms were developed from a large, detailed mechanism with about 1400 species for a 4-component gasoline surrogate. The two versions of the reduced mechanism developed in this work are: (1) a 96-species version and (2) a 98-species version including nitric oxide formation reactions. Development of reduced mechanisms is necessary because the detailed mechanism is computationally prohibitive in three-dimensional CFD and chemical kinetics simulations.;Simulations of Partial Fuel Stratification (PFS), a GCI strategy, have been performed using CONVERGE with the 96-species reduced mechanism developed in this work for a 4-component gasoline surrogate. Comparison is made to experimental data from the Sandia HCCI/GCI engine at a compression ratio 14:1 at intake pressures of 1 bar and 2 bar. Analysis of the heat release and temperature in the different equivalence ratio regions reveals that sequential auto-ignition of the stratified charge occurs in order of increasing equivalence ratio for 1 bar intake pressure and in order of decreasing equivalence ratio for 2 bar intake pressure. Increased low- and intermediate-temperature heat release with increasing equivalence ratio at 2 bar intake pressure compensates for decreased temperatures in higher-equivalence ratio regions due to evaporative cooling from the liquid fuel spray and decreased compression heating from lower values of the ratio of specific heats. The presence of low- and intermediate-temperature heat release at 2 bar intake pressure alters the temperature distribution of the mixture stratification before hot-ignition, promoting the desired sequential auto-ignition. At 1 bar intake pressure, the sequential auto-ignition occurs in the reverse order compared to 2 bar intake pressure and too fast for useful reduction of the maximum pressure rise rate compared to HCCI. Additionally, the premixed portion of the charge auto-ignites before the highest-equivalence ratio regions. Conversely, at 2 bar intake pressure, the premixed portion of the charge auto-ignites last, after the higher-equivalence ratio regions. More importantly, the sequential auto-ignition occurs over a longer time period for 2 bar intake pressure than at 1 bar intake pressure such that a sizable reduction in the maximum pressure rise rate compared to HCCI can be achieved.
机译:运输占2011年美国能源总需求的28%,其中美国运输能源的93%来自石油。运输部门对全球气候变化的巨大影响,需要更有效,更清洁燃烧的内燃机运行策略。在过去的十年中,这种策略已经引起了广泛的研究关注,即均质电荷压缩点火(HCCI)。尽管HCCI的效率和排放益处已得到公认,但HCCI发动机工作范围的实际限制限制了它们在消费类汽车中的应用。一种这样的限制是在高负荷下,在该负荷下燃烧室中的压力升高率变得过大。燃料分层是降低HCCI发动机的最大压力升高率的一种潜在策略。目的是通过燃料分层引入反应性梯度,以促进顺序自动点火,而不是在均匀情况下进行批量点火。具有燃料分层的汽油燃料压缩点火发动机称为汽油压缩点火(GCI)发动机。尽管已为GCI发动机中的燃油分层进行了合理的实验研究,但仍缺乏对燃油喷雾蒸发,混合和放热的基本缸内过程如何促进观察到的现象的清楚理解。汽油尤为重要的是其对压力敏感的低温化学性质及其对分层装料的顺序自燃的影响。为了使用三维计算流体力学(CFD)和化学动力学方法对带有燃料分层的GCI进行计算研究,两个已经开发出简化的机制。减少的机理是从大型的详细机理发展而来的,该机理涉及四组分汽油替代物,大约有1400种。在这项工作中开发的还原机制的两个版本是:(1)96种版本和(2)98种版本,包括一氧化氮形成反应。简化机制的开发是必要的,因为详细的机制在三维CFD和化学动力学模拟中在计算上是令人望而却步的。;部分燃料分层(PFS)的模拟是一种GCI策略,已使用CONVERGE与开发的96种​​简化机制进行了模拟在这项工作中使用4组分汽油替代品。与桑迪亚HCCI / GCI发动机的实验数据进行了比较,压缩比为14:1,进气压力为1 bar和2 bar。对不同当量比区域内的放热和温度进行分析后发现,分层进料的顺序自动点火发生的顺序是,当进气压力为1 bar时,当量比增大;当进气压力为2 bar时,则当量比减小。在2 bar进气压力下,当量比增加时,中低温释放热量的增加补偿了由于液体燃料喷雾产生的蒸发冷却和因比热比值较低而引起的压缩热降低而导致的当量比较高的区域温度降低。 。在2 bar的进气压力下存在中低温放热,会改变热点火之前混合物分层的温度分布,从而促进所需的顺序自动点火。在1 bar的进气压力下,相继的自动点火与2 bar的进气压力相反,并且与HCCI相比太快,无法有效降低最大压力上升率。另外,装料的预混合部分在最高当量比区域之前自动点燃。相反,在2 bar的进气压力下,装料的预混合部分在较高当量比区域之后自动点火。更重要的是,连续的自动点火在2 bar的进气压力下会比在1 bar的进气压力下更长的时间发生,因此,与HCCI相比,最大升压速率可以得到显着降低。

著录项

  • 作者

    Wolk, Benjamin Matthew.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.;Energy.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号