首页> 外文学位 >Modifications of impurity transport and divertor sources by lithium wall conditioning in the National Spherical Torus Experiment.
【24h】

Modifications of impurity transport and divertor sources by lithium wall conditioning in the National Spherical Torus Experiment.

机译:国家球形圆环实验中锂壁调节对杂质传输和偏滤源的改性。

获取原文
获取原文并翻译 | 示例

摘要

In the National Spherical Torus Experiment (NSTX), lithium coatings are evaporated on graphite plasma facing components (PFCs) for wall conditioning. In lithium-conditioned H-mode discharges, carbon accumulation is observed with core concentrations ≤10%, leading to a lack of density control, while lithium ions have concentrations ≤0.1%. In this thesis, modifications of carbon and lithium divertor sources as well as scrape-off layer (SOL) and core transport due to lithium conditioning are studied. Spectroscopic impurity influxes (measured by filtered cameras) and 2D multi-fluid edge transport simulations via the UEDGE code are employed to study divertor impurity sources and SOL transport, respectively. Core transport of carbon and lithium is analyzed using the impurity transport code MIST and the neoclassical transport codes NEO and NCLASS.;A reduction of the carbon sputtering yield in the lower divertor is observed with lithium evaporation. However, weaker divertor impurity retention resulting from reduced recycling (inferred from UEDGE simulations) and the possible importance of wall sources can counteract this reduction in divertor carbon influxes. The suppression of edge-localized-modes (ELMs) is the primary cause of the increased carbon inventories in lithium-conditioned discharges, leading to lack of density control. Deviations from neoclassical predictions for carbon transport are observed at the pedestal top in lithium-conditioned discharges, indicating the presence of anomalous outward convection.;While the lithium sputtering yield from lithium-coated graphite in the divertor is consistent with physical and temperature-enhanced sputtering, a strong reduction in ionized lithium influxes is observed, possibly due to prompt re-deposition. The different poloidal source distribution and the stronger divertor retention for lithium (inferred from UEDGE simulations) contribute to a lower edge lithium source with respect to carbon. The latter is due to the shorter lithium ionization mean-free-path and weaker classical parallel forces. The high neoclassical lithium diffusivity, due to collisions with carbon ions, is partially responsible for the low lithium core densities. Furthermore, the higher neoclassical levels make lithium transport closer to neoclassical expectations.;The NSTX-Upgrade baseline scenario includes lithium coatings on graphite PFCs for deuterium particle control. While the remarkably good lithium divertor retention makes it an attractive choice, the suppression of ELMs leads to carbon accumulation and therefore to the need to develop impurity mitigation techniques.
机译:在国家球形圆环实验(NSTX)中,锂涂层在石墨等离子饰面组件(PFC)上蒸发,用于墙面调节。在以锂为条件的H模式放电中,观察到碳积累的核心浓度≤10%,导致缺乏密度控制,而锂离子的浓度≤0.1%。本文研究了碳和锂偏滤器源的改性以及由于锂调节而产生的刮除层(SOL)和核心传输。使用光谱学的杂质涌入量(通过滤波相机测量)和通过UEDGE代码进行的二维多流体边缘传输模拟分别研究了偏滤器杂质源和SOL传输。使用杂质传输代码MIST和新古典传输代码NEO和NCLASS分析了碳和锂的核传输。通过锂蒸发观察到下分流器中碳溅射产率的降低。但是,由于回收减少(从UEDGE模拟中推断)而导致的偏滤器杂质保留能力较弱,以及壁源的重要性可能会抵消偏滤器碳流入量的减少。边缘定位模式(ELM)的抑制是锂调节放电中碳库增加的主要原因,导致缺乏密度控制。在锂条件放电的基座顶部观察到与碳传输新古典预测的偏差,表明存在异常的向外对流;虽然偏滤器中锂涂层石墨的锂溅射产率与物理溅射和温度增强溅射一致,观察到离子锂流入量的强烈减少,这可能是由于迅速的再沉积所致。锂的不同的极谱源分布和更强的偏光器保持能力(从UEDGE模拟中推断)有助于降低碳源的边缘锂源。后者是由于较短的锂电离平均自由程和较弱的经典平行力。由于与碳离子的碰撞,新古典锂的高扩散性部分归因于低锂核密度。此外,更高的新古典水平使锂的运输更接近新古典的期望。NSTX升级基准方案包括用于氘粒子控制的石墨PFC上的锂涂层。尽管极好的锂偏滤器保持力使其成为有吸引力的选择,但抑制ELM会导致碳积聚,因此需要开发减少杂质的技术。

著录项

  • 作者

    Scotti, Filippo.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Plasma physics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 330 p.
  • 总页数 330
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号