首页> 外文学位 >Plasma enhanced chemical vapor deposition of silicon thin films: Characterization of film growth at different frequencies and gas compositions utilizing plasma diagnostics.
【24h】

Plasma enhanced chemical vapor deposition of silicon thin films: Characterization of film growth at different frequencies and gas compositions utilizing plasma diagnostics.

机译:等离子体增强了硅薄膜的化学气相沉积:利用等离子体诊断技术表征不同频率和气体成分下的薄膜生长。

获取原文
获取原文并翻译 | 示例

摘要

Hydrogenated amorphous Si (a-Si:H) and nano-crystalline silicon (nc-Si:H) thin films with unique properties have provoked wide research interest and technology applications for thin film silicon solar cells, and active layer in thin film transistors for liquid crystal display. The technologies investigated for both a-Si:H and nc-Si:H thin film preparation have included Sputtering , Hot Wire Chemical Vapor Deposition (HWCVD), Photochemical-CVD and Plasma Enhanced CVD (PECVD). Of these, PECVD is the most recognized and utilized technology for high quality, low temperature and large area thin film deposition. The effect of PECVD silicon thin film growth condition on the film properties, device performance and the plasma characterization need to be deeply understood.;This dissertation analyzes the growth rate and material properties of thin film silicon at different plasma excitation frequencies and gas compositions by PECVD based on in-situ Plasma Diagnostics by Optical Emission Spectroscopy (OES) and Langmuir Probe. A relatively unique aspect of this research is evaluating the effect of adding a small amount of higher order silane gas to catalyze decomposition of the dominant silane species to enhance the growth rate.;It has been found that the addition of 1.7% Si2H6 flow into SiH4/H2 mixture increased the a-Si:H growth rate by 60%. The optimization of a-Si:H deposition utilizing the SiH 4/ Si2H6 /H2 mixture resulted in films grown at high rate and power with low microstructure factor which correlates with better stability of a-Si:H. The process window for transition from a-Si:H to nc-Si:H deposition was increased at higher H2/SiH4 ratio and large grain size was achieved at either high pressure for RF 13.56 MHz or low pressure for Very High Frequency (VHF) 40.56MHz discharge.;Si films grown at high H2/SiH4 ratio or RF power, corresponding to a higher H alpha/SiH* intensity ratio, have lower microstructure factor (Rmf ) from Fourier Transform Infrared Spectroscopy for a-Si:H and higher fraction crystallinity (Xc ) from Raman spectroscopy for nc-Si:H films, respectively where the growth rate is proportional to the electron density of the plasma analyzed by Langmuir Probe. The plasma Electron Energy Distribution calculated through Druyvesteyn Method indicates an increase of high energy electron percentage at higher RF power, resulting in larger H2 dissociation level for higher H alpha/SiH* detected by OES. The high energy electron density and plasma potential is decreased at higher process pressure, resulting in less ion-surface bombardment and larger grain size formation of nc-Si:H film. Comparing RF with VHF plasma, the VHF plasma had one order of magnitude higher electron density leading to better H2/SiH 4 utilization.;An a-Si:H solar cell with initial efficiency of 7.4% was fabricated with intrinsic layer deposited from SiH4/Si2H 6/H2 discharge at a high growth rate of >5A/s and the stabilized performance after light soaking was similar with the baseline cells grown at 1.8A/s. nc-Si:H solar cell with efficiency of 4.5% was obtained with a growth rate of 4A/s by SiH4/Si2H6 /H2 discharge.
机译:具有独特性能的氢化非晶硅(a-Si:H)和纳米晶体硅(nc-Si:H)薄膜引起了薄膜硅太阳能电池以及薄膜晶体管有源层的广泛研究兴趣和技术应用。液晶显示器。用于a-Si:H和nc-Si:H薄膜制备的研究技术包括溅射,热线化学气相沉积(HWCVD),光化学CVD和等离子增强CVD(PECVD)。其中,PECVD是用于高质量,低温和大面积薄膜沉积的最受认可和利用的技术。需要深入了解PECVD硅薄膜生长条件对薄膜性能,器件性能和等离子体表征的影响。;本文分析了PECVD在不同等离子体激发频率和气体成分下薄膜硅的生长速率和材料性能。基于通过发射光谱(OES)和Langmuir探针进行的原位等离子体诊断。这项研究的一个相对独特的方面是评估添加少量高阶硅烷气体以催化主要硅烷物种分解以提高生长速率的效果。已发现向SiH4中添加了1.7%Si2H6 / H2混合物将a-Si:H的生长速率提高了60%。利用SiH 4 / Si2H6 / H2混合物优化a-Si:H沉积,可以使薄膜以高速率和高功率生长,并且具有较低的微结构因子,这与a-Si:H的更好稳定性相关。在较高的H2 / SiH4比下,从a-Si:H过渡到nc-Si:H的过程窗口增加,并且在RF 13.56 MHz的高压下或甚高频(VHF)的低压下均实现了大晶粒尺寸40.56MHz放电。以高H2 / SiH4比或RF功率生长的Si膜,对应较高的H alpha / SiH *强度比,对于a-Si:H,傅里叶变换红外光谱法测得的显微结构因子(Rmf)较低,而较高nc-Si:H膜的拉曼光谱的平均结晶度(Xc),其中生长速率与Langmuir探针分析的等离子体的电子密度成比例。通过Druyvesteyn方法计算出的等离子体电子能量分布表明,在较高的RF功率下,高能电子百分比增加,导致OES检测到的较高H alpha / SiH *的H2解离度更大。在较高的工艺压力下,高能电子密度和等离子体电势降低,从而导致较少的离子表面轰击和nc-Si:H膜的较大晶粒尺寸形成。将RF与VHF等离子体进行比较,VHF等离子体具有更高的电子密度一个数量级,从而导致更好的H2 / SiH 4利用率。;制造了初始效率为7.4%的a-Si:H太阳能电池,并从SiH4 / Si2H 6 / H2以> 5A / s的高生长速率放电,光浸泡后的稳定性能与以1.8A / s增长的基线电池相似。通过SiH4 / Si2H6 / H2放电,以4A / s的速度获得了效率为4.5%的nc-Si:H太阳能电池。

著录项

  • 作者

    Zhu, Lala.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Plasma physics.;Electrical engineering.;Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号