首页> 外文学位 >Frequency-dependent dielectric properties of nanodielectric materials for energy storage applications.
【24h】

Frequency-dependent dielectric properties of nanodielectric materials for energy storage applications.

机译:用于能量存储应用的纳米介电材料的频率相关介电特性。

获取原文
获取原文并翻译 | 示例

摘要

Due to the miniaturization of electronic devices, seeking a high-k nanodielectric material becomes more urgent and important. High-k nanodielectrics have potential to improve the performance of traditional dielectrics in wide applications ranging from capacitors, dielectric resonators to cable insulators and provide key dielectric components in MEMS and NEMS systems and devices which cannot be achieved by the traditional dielectric materials. In this thesis, the main focus is on the theoretical modeling of the frequency-dependent dielectric properties of nanodielectrics such as BaTiO3 (BT) nanoparticles based nanocomposites (ex: BT/P(VDF-HFP) and BT/Parylene composites).;To be able to study the frequency-dependent dielectric properties of the nanodielectric composites, we first need to obtain the dielectric spectrum of the constituent phases involved in the composite system. For single domain and single crystals of BT, a Debye type of dissipation and soft mode theory has been adopted to obtain more precise frequency dependent dielectric spectrum of BT. For two-phase composites, Wiener Rule, Lichtenecker model, Maxwell-Wagner model, Yamada, and modified Kerner model were applied to evaluate frequency dependent dielectric spectrum of nanocomposites. For dielectric constants of BT/PVDF nanocomposites which belong to 0-3 type of nanoparticle composites, Lichtenecker model, Maxwell-Wagner model and Yamada model show reasonable agreements with the experimental data up to 50% volume fraction of the nanoparticles. At the higher volume fraction of the nanoparticles, the experimental data shows decreasing trend dielectric constant of the composites due to increase of porosity of the system. In this case a three-phase model (nanoparticles/pores/matrix) was developed to predict dielectric properties of the system at higher volume fraction of nanoparticles (up to 80%). The results showed reasonable agreements for a wide range of frequency.;For layered structure, the dielectric constants of a composite can be predicted using Wiener's lower bound. First, Lichtenecker logarithmic rule and modified Kerner model were applied to take into account of the packing density to evaluate frequency dependent dielectric spectrum of self-assembled pure BT thin film. Then, for the 2-2 type layered structure; Wiener lower bound was modified and applied to obtain the dielectric properties of BT/Parylene layered nanocomposites, and a simple rule of mixture has been developed using Lichtenecker logarithmic rule to predict the dielectric loss of the multi-layered composites. The predicted dielectric properties of the BT/Parylene nanocomposites agreed reasonably with the experimental results, whereas a little discrepancy in dielectric loss tangent shown at frequency 100 kHz.;The developed models may lead to better understanding of structure/property relation of the system and provide the guidance for optimization of the material system in design of new dielectrics for energy storage applications.;The last part of this thesis focuses on the new complex ceramics developed in our research team. With discovery of a new class of complex ceramics aMn 3Ti4O14.25 (BMT) for better dielectric properties in our research team, we also found multi-functionality of this new material such as ferromagnetic, ferroelectric and multiferroic behaviors. Here we only consider the ferroelectric behavior of BMT. It is found that this new ceramic has very high permittivity. The high permittivity is attributed to electron related polarization in conjunction with electron correlation polarization playing key role in the ferroelectric behavior of BaMn3Ti 4O14.25.;To verify the ferroelectric behaviors of the new material system, the electric displacement (Polarization) versus electric field hysteresis and strain versus electric field loops of pure aMn3Ti4O 14.25 films were measured for frequencies ranging from 5 to 5000 Hz in our Advanced Materials Lab. At a low frequency of 5Hz, the material exhibits paraelectric behavior, when the frequency increases, the hysteresis loop occurs and the material shows ferroelectric behavior. At high frequency of 5000Hz, the hysteresis loop reduces to linear dielectric behavior due to difficulty of domain switch at high frequencies. It is observed that the coercive field (Ec) and remnant polarization (P r) increases with frequency. At 5000 Hz there is no hysteresis, and this new material acts as a linear dielectric material.;A micromechanics based model was adopted to evaluate the ferroelectric hysteresis behavior of the new aMn3Ti4O14.25 material. In this case, the variation of the frequency dependent remnant polarization Pr and coercive field Ec was simulated using a simple equation, and then, subsequently it was implemented in the micromechanics based model to study the hysteresis loops at different frequencies. The predicted results showed reasonable agreements with experiments for a wide range of frequency.
机译:由于电子设备的小型化,寻求高k纳米介电材料变得更加紧迫和重要。高k纳米电介质具有改善传统电介质在电容器,电介质谐振器到电缆绝缘子等广泛应用中的性能的潜力,并提供了MEMS和NEMS系统和设备中传统电介质材料无法实现的关键电介质组件。本文主要研究纳米介电材料的频率相关介电特性的理论建模,例如BaTiO3(BT)纳米颗粒基纳米复合材料(例如:BT / P(VD​​F-HFP)和BT / Parylene复合材料)。为了研究纳米电介质复合材料的频率相关介电特性,我们首先需要获得复合系统中涉及的组成相的介电谱。对于BT的单畴和单晶,已采用Debye型耗散和软模式理论来获得更精确的BT频率相关介电谱。对于两相复合材料,应用维纳规则,Lichtenecker模型,Maxwell-Wagner模型,Yamada和改良的Kerner模型来评估纳米复合材料的频率相关介电谱。对于属于0-3型纳米颗粒复合材料的BT / PVDF纳米复合材料的介电常数,Lichtenecker模型,Maxwell-Wagner模型和Yamada模型显示出与实验数据合理的一致性,达到纳米颗粒体积分数的50%。在纳米颗粒的较高体积分数下,实验数据显示由于系统孔隙率的增加,复合材料的趋势介电常数降低。在这种情况下,开发了一个三相模型(纳米颗粒/孔/基质)来预测纳米颗粒体积分数更高(高达80%)时系统的介电性能。结果表明在广泛的频率范围内具有合理的一致性。对于层状结构,可以使用维纳下限预测复合材料的介电常数。首先,应用Lichtenecker对数法则和修正的Kerner模型,考虑堆积密度,以评估自组装纯BT薄膜的频率相关介电谱。然后,为2-2型分层结构;修改并应用维纳下界以获得BT /聚对二甲苯层状纳米复合材料的介电性能,并使用Lichtenecker对数法则开发了一种简单的混合规则,以预测多层复合材料的介电损耗。 BT /对二甲苯纳米复合材料的预测介电性能与实验结果基本吻合,而在频率为100 kHz时介电损耗正切值略有差异。;开发的模型可能会更好地理解系统的结构/性质关系并提供;用于储能应用的新型电介质设计中的材料系统优化指南。;本文的最后一部分重点研究了我们研究团队开发的新型复合陶瓷。在我们的研究团队中发现了新型复合陶瓷aMn 3Ti4O14.25(BMT),以改善介电性能后,我们还发现了这种新材料的多功能性,例如铁磁,铁电和多铁性行为。在这里,我们仅考虑BMT的铁电行为。发现这种新型陶瓷具有很高的介电常数。高介电常数归因于电子相关极化,而电子相关极化在BaMn3Ti 4O14.25的铁电行为中起着关键作用。;为验证新材料系统的铁电行为,电位移(极化)与电场滞后的关系在我们的高级材料实验室中,对纯aMn3Ti4O 14.25薄膜的应变和电场环路进行了测量,其频率范围为5至5000 Hz。在5Hz的低频下,材料表现出顺电行为,当频率增加时,会出现磁滞回线,并且材料表现出铁电行为。在5000Hz的高频下,由于在高频下域切换的困难,磁滞回线降低为线性介电行为。观察到矫顽场(Ec)和剩余极化(P r)随频率增加。在5000 Hz下没有磁滞,这种新材料可以用作线性介电材料。;采用基于微力学的模型来评估新型aMn3Ti4O14.25材料的铁电磁滞行为。在这种情况下,使用一个简单的方程式模拟了随频率变化的剩余极化强度Pr和矫顽场Ec的变化,然后在基于微力学的模型中将其实现以研究不同频率下的磁滞回线。预测结果表明在广泛的频率范围内与实验合理吻合。

著录项

  • 作者

    Hossain, Muhammad Enayet.;

  • 作者单位

    The City College of New York.;

  • 授予单位 The City College of New York.;
  • 学科 Mechanical engineering.;Materials science.;Electrical engineering.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号