首页> 外文学位 >Development of novel series and parallel sensing system based on nanostructured surface enhanced Raman scattering substrate for biomedical application.
【24h】

Development of novel series and parallel sensing system based on nanostructured surface enhanced Raman scattering substrate for biomedical application.

机译:基于纳米结构表面增强拉曼散射基板的新型串联和并行传感系统的开发,用于生物医学应用。

获取原文
获取原文并翻译 | 示例

摘要

With the advance of nanofabrication, the capability of nanoscale metallic structure fabrication opens a whole new study in nanoplasmonics, which is defined as the investigation of photon-electron interaction in the vicinity of nanoscale metallic structures. The strong oscillation of free electrons at the interface between metal and surrounding dielectric material caused by propagating surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) enables a variety of new applications in different areas, especially biological sensing techniques. One of the promising biological sensing applications by surface resonance polariton is surface enhanced Raman spectroscopy (SERS), which significantly reinforces the feeble signal of traditional Raman scattering by at least 104 times. It enables highly sensitive and precise molecule identification with the assistance of a SERS substrate. Until now, the design of new SERS substrate fabrication process is still thriving since no dominant design has emerged yet. The ideal process should be able to achieve both a high sensitivity and low cost device in a simple and reliable way. In this thesis two promising approaches for fabricating nanostructured SERS substrate are proposed: thermal dewetting technique and nanoimprint replica technique. These two techniques are demonstrated to show the capability of fabricating high performance SERS substrate in a reliable and cost efficient fashion. In addition, these two techniques have their own unique characteristics and can be integrated with other sensing techniques to build a serial or parallel sensing system. The breakthrough of a combination system with different sensing techniques overcomes the inherent limitations of SERS detection and leverages it to a whole new level of systematic sensing. The development of a sensing platform based on thermal dewetting technique is covered as the first half of this thesis. The process optimization, selection of substrate material, and improved deposition technique are discussed in detail. Interesting phenomena have been found including the influence of Raman enhancement on substrate material selection and hot-spot rich bimetallic nanostructures by physical vapor deposition on metallic seed array, which are barely discussed in past literature but significantly affect the performance of SERS substrate. The optimized bimetallic backplane assisted resonating nanoantenna (BARNA) SERS substrate is demonstrated with the enhancement factor (EF) of 5.8 x 108 with 4.7 % relative standard deviation. By serial combination with optical focusing from nanojet effect, the nanojet and surface enhanced Raman scattering (NASERS) are proved to provide more than three orders of enhancement and enable us to perform stable, nearly single molecule detection. The second part of this thesis includes the development of a parallel dual functional nano Lycurgus cup array (nanoLCA) plasmonic device fabricated by nanoimprint replica technique. The unique configuration of the periodic nanoscale cup-shaped substrate enables a novel hybrid resonance coupling between SPR from extraordinary (EOT) and LSPR from dense sidewall metal nanoparticles with only single deposition process. The sub-50nm dense sidewall metal nanoparticles lead to high SERS performance in solution based detection, by which most biological and chemical analyses are typically performed. The SERS EF was calculated as 2.8 x 107 in a solution based environment with 10.2 % RSD, which is so far the highest reported SERS enhancement achieved with similar periodic EOT devices. In addition, plasmonic colorimetric sensing can be achieved in the very same device and the sensitivity was calculated as 796 nm/RIU with the FOM of 12.7. It creates a unique complementary sensing platform with both rapid on-site colorimetric screening and follow-up precise Raman analysis for point of care and resource limited environment applications. The implementations of bifunctional sensing on opto-microfluidic and smartphone platforms are proposed and examined here as well.
机译:随着纳米制造技术的发展,纳米级金属结构的制造能力开启了对纳米等离激元学的全新研究,这被定义为对纳米级金属结构附近的光子-电子相互作用的研究。传播的表面等离子体激元共振(SPR)或局部表面等离子体激元共振(LSPR)在金属与周围介电材料之间的界面上产生的自由电子强烈振荡,使得在不同领域,尤其是生物传感技术中,有许多新的应用。表面共振极化技术是有前途的生物传感应用之一是表面增强拉曼光谱(SERS),它可将传统拉曼散射的微弱信号显着增强至少104倍。借助SERS底物,它可以实现高度灵敏和精确的分子鉴定。到目前为止,由于尚未出现主导设计,因此新的SERS基板制造工艺的设计仍在蓬勃发展。理想的过程应该能够以简单而可靠的方式实现高灵敏度和低成本的器件。本文提出了两种有前途的制备纳米结构SERS衬底的方法:热脱湿技术和纳米压印复制技术。证明这两种技术显示出以可靠且经济高效的方式制造高性能SERS基板的能力。此外,这两种技术具有自己独特的特性,可以与其他传感技术集成在一起以构建串行或并行传感系统。具有不同传感技术的组合系统的突破克服了SERS检测的固有局限性,并将其应用到系统传感的全新水平。本文的上半部分介绍了基于热去湿技术的传感平台的开发。详细讨论了工艺优化,衬底材料的选择和改进的沉积技术。已经发现了有趣的现象,包括拉曼增强对衬底材料选择的影响以及通过在金属种子阵列上进行物理气相沉积而形成的富热点双金属纳米结构,这在过去的文献中很少进行讨论,但是会显着影响SERS衬底的性能。优化的双金属背板辅助谐振纳米天线(BARNA)SERS基板的增强因子(EF)为5.8 x 108,相对标准偏差为4.7%。通过将纳米喷射效应与光学聚焦进行串行组合,纳米喷射和表面增强拉曼散射(NASERS)被证明可以提供超过三个数量级的增强,使我们能够执行稳定的,几乎单分子的检测。本文的第二部分包括通过纳米压印复制技术制造的平行双功能纳米Lycurgus杯阵列(nanoLCA)等离子体器件的开发。周期性纳米级杯状基板的独特配置使得仅需一次沉积过程即可实现非凡(EOT)的SPR与致密侧壁金属纳米粒子的LSPR之间的新型混合共振耦合。低于50nm的致密侧壁金属纳米颗粒在基于溶液的检测中具有较高的SERS性能,通常可通过此方法进行大多数生物学和化学分析。在具有10.2%RSD的基于解决方案的环境中,SERS EF计算为2.8 x 107,这是迄今为止报告的使用类似周期性EOT设备实现的SERS增强最高的结果。此外,可以在同一台设备中实现等离子比色传感,其灵敏度为796 nm / RIU,FOM为12.7。它创建了独特的互补感测平台,具有快速的现场比色筛查和后续的精确拉曼分析,可用于护理点和资源有限的环境应用。本文还提出并研究了在光微流体和智能手机平台上双功能传感的实现。

著录项

  • 作者

    Chang, Te-Wei.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Electrical engineering.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号