首页> 外文学位 >Super resolution imaging by programmable autonomous blinking.
【24h】

Super resolution imaging by programmable autonomous blinking.

机译:通过可编程的自动闪烁实现超高分辨率成像。

获取原文
获取原文并翻译 | 示例

摘要

Current far-field super-resolution techniques offer unprecedented spatial resolution, however, the identification and quantification of multiple molecules that cannot be spatially resolved remains challenging, mainly hampered by the lack of a comprehensive kinetic model for stochastic dye blinking, undercounting due to imperfect dye labeling of molecules, photobleaching, and limited multiplexing capabilities. Here I have developed and validated a quantitative multiplexing super-resolution approach, based on programmable autonomous blinking of a nucleic acid probe.;I use the transient binding of short fluorescently labeled oligonucleotides (technique named DNA-PAINT) for simple and easy-to-implement multiplexed 2D and 3D super-resolution imaging inside fixed cells and achieve sub-10 nm spatial resolution in vitro using synthetic DNA structures. To achieve multiplexing we developed Exchange-PAINT that allows sequential imaging of multiple target molecules using only a single dye and a single laser source. For first time we experimentally have demonstrated super-resolution imaging of 10 synthetic DNA structures and 4 organelles imaging in cells by targeting 4 specific proteins. For single molecular counting we developed a method called quantitative PAINT or qPAINT, that enables counting by analyzing the predictable binding kinetics of the DNA imager strands with their targets molecules. We precisely benchmarked qPAINT using synthetic DNA nanostructures with a defined number of binding sites, and showed that qPAINT can count integer numbers of molecules with a precision of ∼90 % over a large dynamic range (10 to 150 molecules). High counting precision and accuracy was maintained when imaging cell surface receptor clusters, mRNA molecules in fixed cells and protein clusters from nucleoporines that form the nuclear pore complex (NCP). We also applied this new approach for analyzing the complex interactions of 5 receptor tyrosine kinases (RTKs) simultaneously within their native cellular context in a breast cancer cell line and finally for in situ visualization of single-copy regions of the genome in mouse fibroblasts.
机译:当前的远场超分辨率技术提供了空前的空间分辨率,但是,无法空间分辨的多个分子的鉴定和定量仍然具有挑战性,主要是由于缺乏用于随机染料闪烁的综合动力学模型而受到阻碍,由于染料的不完全计数不足分子标记,光漂白和有限的复用能力。在这里,我基于核酸探针的可编程自主闪烁开发并验证了一种定量多路复用超分辨率方法。;我使用短荧光标记的寡核苷酸(名为DNA-PAINT的技术)的瞬时结合来实现简单易用的在固定细胞内实现多路2D和3D超高分辨率成像,并使用合成的DNA结构在体外达到10 nm以下的空间分辨率。为了实现多路复用,我们开发了Exchange-PAINT,它允许仅使用一种染料和一个激光源对多个目标分子进行连续成像。我们首次通过实验证明了通过靶向4种特定蛋白质,可对细胞中的10种合成DNA结构和4个细胞器成像进行超分辨率成像。对于单分子计数,我们开发了一种称为定量PAINT或qPAINT的方法,该方法可以通过分析DNA成像链与目标分子的可预测结合动力学来进行计数。我们使用具有定义数目的结合位点的合成DNA纳米结构精确地对qPAINT进行基准测试,结果表明qPAINT可以在较大的动态范围(10到150个分子)中以〜90%的精度计算整数个分子。当成像细胞表面受体簇,固定细胞中的mRNA分子和来自形成核孔复合物(NCP)的核孔蛋白的蛋白簇时,可以保持较高的计数精度和准确性。我们还应用了这种新方法来同时分析乳腺癌细胞系中5种受体酪氨酸激酶(RTK)在其天然细胞环境中的复杂相互作用,最后在小鼠成纤维细胞中原位观察基因组的单拷贝区域。

著录项

  • 作者

    Avendano Amado, Maier S.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Cellular biology.;Optics.;Biophysics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 221 p.
  • 总页数 221
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号