首页> 外文学位 >Exploring the Electronic Landscape at Interfaces and Junctions in Semiconductor Nanowire Devices with Subsurface Local Probing of Carrier Dynamics.
【24h】

Exploring the Electronic Landscape at Interfaces and Junctions in Semiconductor Nanowire Devices with Subsurface Local Probing of Carrier Dynamics.

机译:利用载流子动力学的地下局部探测探索半导体纳米线器件的界面和结处的电子景观。

获取原文
获取原文并翻译 | 示例

摘要

The solid state devices that are pervasive in our society, are based on building blocks composed of interfaces between materials and junctions that manipulate how charge carriers behave in a device. As the dimensions of these devices are reduced to the nanoscale, surfaces and interfaces play a larger role in the behavior of carriers in devices and must be thoroughly investigated to understand not only the material properties but how these materials interact. Separating the effects of these different building blocks is a challenge, as most testing methods measure the performance of the whole device. Semiconductor nanowires represent an excellent test system to explore the limits of size and novel device structures. The behavior of charge carriers in semiconductor nanowire devices under operational conditions is investigated using local probing technique electron beam induced current (EBIC). The behavior of locally excited carriers are driven by the forces of drift, from electric fields within a device at junctions, surfaces, contacts and, applied voltage bias, and diffusion. This thesis presents the results of directly measuring these effects spatially with nanometer resolution, using EBIC in Ge, Si, and complex heterostructure GaAs/AlGaAs nanowire devices. Advancements to the EBIC technique, have pushed the resolution from tens of nanometers down to 1 to 2 nanometers. Depth profiling and tuning of the interaction volume allows for the separating the signal originating from the surface and the interior of the nanowire. Radial junctions and variations in bands can now be analyzed including core/shell hetero-structures. This local carrier probing reveals a number of surprising behaviors; Most notably, directly imaging the evolution of surface traps filling with electrons causing bandbending at the surface of Ge nanowires that leads to an enhancement in the charge separation of electrons and holes, and extracting different characteristic lengths from GaAs and AlGaAs in core/shell nanowires. For new and emerging solid state materials, understanding charge carrier dynamics is crucial to designing functional devices. Presented here are examples of the wide application of EBIC, and its variants, through imaging domains in ferroelectric materials, local electric fields and defects in 2D semiconductor material MoS2, and gradients in doping profiles of solar cells. Measuring the local behavior of carrier dynamics, EBIC has the potential to be a key metrology technique in correlative microscopy, enabling a deeper understanding of materials and how they interact within devices.
机译:在我们的社会中普遍使用的固态设备基于由材料和结之间的界面组成的构造块,这些结点控制着电荷载流子在设备中的行为。随着这些器件的尺寸减小到纳米级,表面和界面在器件中载流子的行为中起着更大的作用,因此必须进行彻底研究以不仅了解材料特性,还应了解这些材料如何相互作用。分离这些不同构件的影响是一项挑战,因为大多数测试方法都可以衡量整个设备的性能。半导体纳米线代表了一个极好的测试系统,可以探索尺寸和新颖器件结构的极限。使用局部探测技术电子束感应电流(EBIC)研究了半导体纳米线器件在工作条件下的载流子行为。局部激发载流子的行为是由漂移力驱动的,漂移力来自器件内在结,表面,触点处的电场,以及施加的电压偏置和扩散。本文介绍了在Ge,Si和复杂异质结构GaAs / AlGaAs纳米线器件中使用EBIC直接以纳米分辨率在空间上测量这些效应的结果。 EBIC技术的进步已将分辨率从数十纳米降低到1至2纳米。深度剖析和调整交互作用量可以分离源自纳米线表面和内部的信号。现在可以分析径向结点和谱带中的变化,包括核/壳异质结构。这种本地载体探测揭示了许多令人惊讶的行为。最值得注意的是,直接成像充满电子的表面陷阱的演化过程,从而导致Ge纳米线表面的能带弯曲,从而导致电子和空穴的电荷分离增强,并从核/壳纳米线的GaAs和AlGaAs提取不同的特征长度。对于新兴的固态材料,了解电荷载流子动力学对于设计功能器件至关重要。此处介绍的是EBIC及其变体的广泛应用的示例,其通过铁电材料中的成像域,2D半导体材料MoS2中的局部电场和缺陷以及太阳能电池的掺杂轮廓中的梯度而实现。通过测量载流子动力学的局部行为,EBIC有可能成为相关显微镜中的关键计量技术,从而使人们能够更深入地了解材料及其在设备中的相互作用。

著录项

  • 作者

    McGuckin, Terrence.;

  • 作者单位

    Drexel University.;

  • 授予单位 Drexel University.;
  • 学科 Materials science.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号