首页> 外文学位 >A Simulation Platform for Accurate Prediction of In-bin Drying and Storage of Rough Rice.
【24h】

A Simulation Platform for Accurate Prediction of In-bin Drying and Storage of Rough Rice.

机译:一个精确预测粗粮仓内干燥和储存的模拟平台。

获取原文
获取原文并翻译 | 示例

摘要

Natural air (NA), in-bin drying and storage of rough rice generally maintains high grain quality, but the associated slow movement and occasional stagnation of the drying front during the process may result in problems of rice quality reduction, mold growth, and mycotoxin development, especially for rough rice in the top layers of the bin. Using modeling techniques to simulate in-bin rough rice drying in typically-encountered field scenarios may provide a tool for rapidly predicting the grain condition as drying progresses. The objectives for this study were to (1) investigate accurate models for predicting equilibrium moisture content (EMC) of rough rice at set conditions of air temperature and relative humidity (RH), (2) develop and validate a mathematical model for predicting moisture content (MC) and temperature profiles of rough rice during NA, in-bin drying, and (3) perform computer simulations using the developed mathematical model to determine the impacts of drying strategy (rough rice initial MC, drying-start date, air flowrate, and fan control strategy) on rough rice drying duration, maximum dry matter loss, and percent overdrying. In order to accomplish objective (1), adsorption and desorption isotherms of long-grain hybrid rough rice at temperatures ranging from 15°C to 35°C and RHs of 10% to 90% were determined by using a Dynamic Vapor Sorption analysis device. Non-linear fitting techniques were used to determine constants of models for predicting rough rice adsorption or desorption EMCs. It was determined that the modified Halsey and modified Chung-Pfost equations were the best models to describe rough rice adsorption and desorption isotherms, respectively (RMSEs = 0.54% MC in dry basis and 0.91% MC in dry basis, respectively). To achieve objective (2), Post-Harvest Aeration Simulation Tool - Finite Difference Method, developed by Bartosik and Maier (2004), was modified for rice and used to simulate in-bin rough rice drying in Arkansas. Simulation results were validated by field experiments, which used modern, on-farm bins equipped with "cabling and sensing technology" for in-bin RH and rough rice temperature measurement; the rough rice MC was calculated based on the measured RH and temperature data. The sensor-determined data and simulation results of MC and temperature were compared. The simulation results described well the general trends of rough rice MC and temperature profiles (for MC, mean RMSE = 0.56% MC in wet basis; for temperature, mean RMSE = 1.77°C). The study validated the accuracy of the developed simulation model for prediction of in-bin drying and storage of rough rice. In order to accomplish objective (3), simulations of in-bin drying of rough rice with different drying strategies was performed. A twenty-year weather data set (1995 to 2014) of ambient air temperature and RH of the U.S. Mid-South rice growing locations (Jonesboro, West Memphis, and Stuttgart, Arkansas, and Greenville and Tunica, Mississippi) were procured. Drying simulations were performed using air flowrates 0.55, 1.10, 1.65, and 2.20 m3 min-t-1, drying-start dates of 15 August, 15 September, and 15 October, and rough rice initial MCs of 16% to 22% (wet basis). Fan control strategies comprised running the drying fan continuously, at set window of natural air equilibrium moisture content, and air EMC window with supplemental heating option. Results showed that rough rice drying duration, dry matter loss, and percent overdrying were dependent on selected drying strategy with fan control strategy, initial rough rice MC, and air flowrate being key factors. Information generated using the simulations could guide rice producers, especially in selected U.S. Mid-South, to effectively dry rough rice in a timely manner, and mitigate problems of rice quality reduction, excessive mold growth, and mycotoxin contamination.
机译:自然空气(NA),箱内干燥和糙米的存储通常保持较高的谷物品质,但是在此过程中,伴随的缓慢移动和干燥前沿的偶尔停滞可能会导致水稻品质下降,霉菌生长和霉菌毒素的问题发展,特别是在垃圾箱顶层的糙米。使用建模技术来模拟通常遇到的田间情况下的箱内糙米干燥可能会提供一种工具,用于随着干燥的进行快速预测谷物状况。这项研究的目的是(1)研究在设定的温度和相对湿度(RH)条件下预测糙米的平衡水分含量(EMC)的准确模型,(2)开发并验证预测水分含量的数学模型(NA),箱内干燥过程中糙米的温度(MC)和温度曲线,以及(3)使用开发的数学模型进行计算机模拟,以确定干燥策略的影响(糙米初始MC,干燥开始日期,空气流量,和风扇控制策略),以确保稻米干燥的持续时间,最大的干物质损失和过度干燥百分比。为了实现目标(1),使用动态蒸汽吸附分析装置测定了长粒杂交糙米在15°C至35°C的温度和相对湿度10%至90%的条件下的吸附和解吸等温线。使用非线性拟合技术来确定用于预测大米吸附或解吸EMC的模型常数。确定修改的Halsey方程和修改的Chung-Pfost方程分别是描述糙米吸附和解吸等温线的最佳模型(RMSEs分别为干基0.54%MC和干基0.91%MC)。为了实现目标(2),对Bartosik和Maier(2004)开发的收获后曝气模拟工具-有限差分法进行了修改,用于水稻,并用于模拟阿肯色州的箱内糙米干燥。模拟结果通过现场试验得到了验证,该试验使用了配备“电缆和传感技术”的现代农场箱进行箱内相对湿度和糙米温度测量。根据测得的相对湿度和温度数据计算出糙米MC。比较了传感器确定的数据以及MC和温度的仿真结果。模拟结果很好地描述了糙米MC的总体趋势和温度曲线(对于MC,湿基的平均RMSE = 0.56%MC;对于温度,平均的RMSE = 1.77°C)。该研究验证了所开发的模拟模型用于预测粗粮仓内干燥和储存的准确性。为了实现目标(3),对不同干燥策略的糙米箱内干燥进行了模拟。获得了20年的天气数据集(1995年至2014年),该数据集是美国中南水稻种植地(琼斯伯勒,西孟菲斯和斯图加特,阿肯色州以及格林维尔和密西西比州的蒂尼卡)的环境温度和相对湿度的。使用空气流量0.55、1.10、1.65和2.20 m3 min-t-1、8月15日,9月15日和10月15日的干燥开始日期以及糙米初始MC为16%至22%(湿基础)。风扇控制策略包括在设定的自然空气平衡水分含量窗口连续运行干燥风扇,以及带有补充加热选项的空气EMC窗口。结果表明,糙米的干燥持续时间,干物质损失和过度干燥百分比取决于所选的干燥策略,其中风扇控制策略,初始糙米MC和空气流量是关键因素。使用模拟生成的信息可以指导稻米生产商(特别是在选定的美国中南部地区)及时有效地干燥糙米,并减轻稻米质量下降,霉菌过度生长和霉菌毒素污染的问题。

著录项

  • 作者

    Zhong, Houmin.;

  • 作者单位

    University of Arkansas.;

  • 授予单位 University of Arkansas.;
  • 学科 Agriculture.;Agricultural engineering.
  • 学位 M.S.
  • 年度 2015
  • 页码 68 p.
  • 总页数 68
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号