首页> 外文OA文献 >Numerical modelling of solute transport processes using higher order accurate finite difference schemes. Numerical treatment of flooding and drying in tidal flow simulations and higher order accurate finite difference modelling of the advection diffusion equation for solute transport predictions.
【2h】

Numerical modelling of solute transport processes using higher order accurate finite difference schemes. Numerical treatment of flooding and drying in tidal flow simulations and higher order accurate finite difference modelling of the advection diffusion equation for solute transport predictions.

机译:使用高阶精确有限差分方案对溶质输运过程进行数值模拟。潮汐流模拟中洪水和干燥的数值处理以及对溶质运移预测的对流扩散方程的高阶精确有限差分建模。

摘要

The modelling of the processes of advection and dispersion-diffusion is theudmost crucial factor in solute transport simulations. It is generally appreciatedudthat the first order upwind difference scheme gives rise to excessive numericaluddiffusion, whereas the conventional second order central difference scheme exhibitsudsevere oscillations for advection dominated transport, especially in regionsudof high solute gradients or discontinuities. Higher order schemes have thereforeudbecome increasingly used for improved accuracy and for reducing grid scale oscillations.udTwo such schemes are the QUICK (Quadratic Upwind Interpolation forudConvective Kinematics) and TOASOD (Third Order Advection Second OrderudDiffusion) schemes, which are similar in formulation but different in accuracy,udwith the two schemes being second and third order accurate in space respectivelyudfor finite difference models. These two schemes can be written in variousudfinite difference forms for transient solute transport models, with the differentudrepresentations having different numerical properties and computational efficiencies.udAlthough these two schemes are advectively (or convectively) stable,udit has been shown that the originally proposed explicit QUICK and TOASODudschemes become numerically unstable for the case of pure advection. The stabilityudconstraints have been established for each scheme representation basedudupon the von Neumann stability analysis. All the derived schemes have beenudtested for various initial solute distributions and for a number of continuousuddischarge cases, with both constant and time varying velocity fields.udThe 1-D QUICKEST (QUICK with Estimated Streaming Term) scheme isudthird order accurate both in time and space. It has been shown analytically andudnumerically that a previously derived quasi 2-D explicit QUICKEST scheme,udwith a reduced accuracy in time, is unstable for the case of pure advection. Theudmodified 2-D explicit QUICKEST, ADI-TOASOD and ADI-QUICK schemesudhave been developed herein and proved to be numerically stable, with the bility sta- region of each derived 2-D scheme having also been established. All theseudderived 2-D schemesh ave been tested in a 2-D domain for various initial solute distributions with both uniform and rotational flow fields. They were furtherudtested for a number of 2-D continuous discharge cases, with the correspondingudexact solutions having also been derived herein.udAll the numerical tests in both the 1-D and 2-D cases were compared withudthe corresponding exact solutions and the results obtained using various otheruddifference schemes, with the higher order schemes generally producing moreudaccurate predictions, except for the characteristic based schemes which failedudto conserve mass for the 2-D rotational flow tests. The ADI-TOASOD schemeudhas also been applied to two water quality studies in the U. K., simulating nitrateudand faecal coliform distributions respectively, with the results showing audmarked improvement in comparison with the results obtained by the secondudorder central difference scheme.udDetails are also given of a refined numerical representation of flooding anduddrying of tidal flood plains for hydrodynamic modelling, with the results showingudconsiderable improvements in comparison with a number of existing modelsudand in good agreement with the field measured data in a natural harbour study.
机译:对流和弥散扩散过程的建模是溶质运移模拟中最重要的因素。通常认为,一阶迎风差分方案会引起过多的数值扩散,而常规的二阶中心差分方案则表现出对流主导输运的剧烈振荡,特别是在溶质梯度或不连续性高的区域。因此,越来越多地使用高阶方案来提高精度并减少网格规模的振荡。 ud两种这样的方案是QUICK(对流运动的二次风迎风插值)和TOASOD(对流二阶三阶对流运动)方案。在公式上相似,但精度不同,对于有限差分模型,这两种方案在空间上分别是二阶和三阶精度。对于瞬态溶质运移模型,这两种方案可以用各种绝对差形式来编写,具有不同的 ud表示具有不同的数值属性和计算效率。 ud尽管这两种方案都是对流(或对流)稳定的,但 udit表明:对于纯对流,最初提出的显式QUICK和TOASOD udschems在数值上变得不稳定。已经基于冯·诺依曼稳定性分析为每个方案表示建立了稳定性 udconstraints。 , s,,,,,,,,,,, 、、、、、、、、、、、、、、、在时间和空间上都准确。通过分析和数字显示,对于纯对流而言,先前导出的准二维显式QUICKEST方案(时间精度降低)不稳定。本文已经开发了修改后的2-D显式QUICKEST,ADI-TOASOD和ADI-QUICK方案,并证明其在数值上是稳定的,并且还建立了每个导出的2-D方案的能力稳定区。所有这些衍生的2-D方案都已在2-D域中针对具有均匀流场和旋转流场的各种初始溶质分布进行了测试。他们进一步测试了许多二维连续放电案例,并在此也得出了相应的 udexact解。 ud将一维和二维案例中的所有数值测试与相应的 d进行了比较。精确的解决方案和使用各种其他 uddifference方案获得的结果,高阶方案通常会产生更多 udeccurate的预测,但基于特征的方案未能为二维旋转流测试节省质量。 ADI-TOASOD方案已应用于英国的两项水质研究中,分别模拟了硝酸盐 ud和粪便大肠菌群的分布,与第二 udorder中央差异方案获得的结果相比,结果显示显着改善。 ud还详细给出了潮汐泛洪区洪水和洪水的精细数值表示法,用于水动力建模,结果显示,与许多现有模型相比,ud改进很大,与现场实测数据非常吻合。自然港口研究。

著录项

  • 作者

    Chen Yiping;

  • 作者单位
  • 年度 1992
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号