首页> 外文学位 >Optimum acquisition and processing parameters for multichannel analysis of surface waves using 3 D electrical resistivity tomography as control.
【24h】

Optimum acquisition and processing parameters for multichannel analysis of surface waves using 3 D electrical resistivity tomography as control.

机译:使用3D电阻层析成像作为控制,对表面波进行多通道分析的最佳采集和处理参数。

获取原文
获取原文并翻译 | 示例

摘要

Multichannel Analysis of Surface Waves (MASW) and Electrical Resistivity Tomography (ERT) data were acquired in the Newburg, Missouri with the goal of determining optimum MASW acquisition parameters. Users of the MASW tool generally state that greater geophone intervals and greater shot-to-receiver offsets provide for more accurate results. The objective was to determine if this "rule of thumb" applies in karst terrain.;ERT data were acquired along four traverses with eighty-four (84) electrodes at five feet spacing with SuperSting R8 Resistivity System using dipole- dipole array. The data were processed using Earth Imager to generate 2-D resistivity inversion and thereafter, Voxler software was used to collate the 2-D ERT data into a 3-D resistivity model. MASW data on the other hand, were acquired along the same ERT traverses on the same locations using a suite of different geophone intervals (1-ft, 2.5-ft, 5-ft, 7.5-ft, and 10-ft) and shot-to-receiver spacings (0-ft, 10-ft, 20-ft, 30-ft, 40-ft, and 50-ft) with a 20lb sledge hammer as the source. The data were processed using Surfseis software to generate the dispersion curves and 1-D shear wave velocity profiles of the area.;On the basis of the comparative analyses of the ERT and MASW data, it was determined that 2.5-ft and 5-ft geophone gave generated depth of bedrock that was consistent with ERT data. With 5-ft geophone spacing it is possible to image the subsurface to greater depth, but with the 7.5-ft and 10-ft, unidentifiable dispersion curves would be generated. Therefore, in this study area, on the basis of data that were acquired it is recommended that 2.5ft spacing be used if depth of investigation is about 40ft, but if the depth of investigation is about 80-ft, using a sledge hammer source then 5-ft geophone spacing at 20-ft shot-receiver offset distance is recommended.
机译:为了确定最佳的MASW采集参数,在密苏里州纽堡获得了表面波(MASW)和电阻率层析成像(ERT)数据的多通道分析。 MASW工具的用户通常会指出,更大的地震检波器间隔和更大的发射到接收器偏移可提供更准确的结果。目的是确定该“经验法则”是否适用于喀斯特地形。ERT数据是使用偶极-偶极子阵列通过SuperSting R8电阻率系统沿着五根八英尺(84英尺)的电极沿四根导线获得的。使用Earth Imager处理数据以生成2-D电阻率反演,此后,使用Voxler软件将2-D ERT数据整理为3-D电阻率模型。另一方面,MASW数据是使用一套不同的地震检波器间隔(1英尺,2.5英尺,5英尺,7.5英尺和10英尺)在同一位置沿着相同ERT遍历采集的,以20磅的八角锤为源,到接收器的距离(0英尺,10英尺,20英尺,30英尺,40英尺和50英尺)。使用Surfseis软件对数据进行处理,以生成该区域的色散曲线和一维剪切波速度分布图。在对ERT和MASW数据进行比较分析的基础上,确定了2.5英尺和5英尺地震检波器给出了与ERT数据一致的基岩深度。在5英尺地震检波器间距的情况下,可以将地下图像成像到更大的深度,但是在7.5英尺和10英尺的情况下,将生成无法识别的色散曲线。因此,在该研究区域中,根据所获取的数据,如果调查深度约为40英尺,建议使用2.5英尺间距,但是如果调查深度约为80英尺,则使用大锤源推荐在20英尺发射接收器偏移距离处5英尺检波器间距。

著录项

  • 作者

    Nwafor, Uchenna Chibuzo.;

  • 作者单位

    Missouri University of Science and Technology.;

  • 授予单位 Missouri University of Science and Technology.;
  • 学科 Geophysical engineering.;Geological engineering.
  • 学位 M.S.
  • 年度 2015
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号