首页> 外文学位 >Wall-models for large eddy simulation based on a generic additive-filter formulation.
【24h】

Wall-models for large eddy simulation based on a generic additive-filter formulation.

机译:基于通用添加剂过滤器公式的大型涡流模拟的壁模型。

获取原文
获取原文并翻译 | 示例

摘要

Based on the philosophy of only resolving the large scales of turbulent motion, Large Eddy Simulation (LES) has demonstrated potential to provide high-fidelity turbulence simulations at low computational cost. However, when the scales that control the turbulence in a particular flow are not large, LES has to increase significantly its computational cost to provide accurate predictions. This is the case in wall-bounded flows, where the grid resolution required by LES to resolve the near-wall structures is close to the requirements to resolve the smallest dissipative scales in turbulence. Therefore, to reduce this demanding requirement, it has been proposed to model the near-wall region with Reynolds-Averaged Navier-Stokes (RANS) models, in what is known as hybrid RANS/LES approach.;In this work, the mathematical implications of merging two different turbulence modeling approaches are addressed by deriving the exact hybrid RANS/LES Navier-Stokes equations. These equations are derived by introducing an additive-filter, which linearly combines the RANS and LES operators with a blending function. The equations derived with the additive-filter predict additional hybrid terms, which represent the interactions between RANS and LES formulations. Theoretically, the prediction of the hybrid terms demonstrates that the hybridization of the two approaches cannot be accomplished only by the turbulence model equations, as it is claimed in current hybrid RANS/LES models.;The importance of the exact hybrid RANS/LES equations is demonstrated by conducting numerical calculations on a turbulent flat-plate boundary layer. Results indicate that the hybrid terms help to maintain an equilibrated model transition when the hybrid formulation switches from RANS to LES. Results also indicate, that when the hybrid terms are not included, the accuracy of the calculations strongly relies on the blending function implemented in the additive-filter. On the other hand, if the exact equations are resolved, results are only weakly affected by the characteristics of the blending function. Unfortunately, for practical applications the hybrid terms cannot be exactly computed. Consequently, a reconstruction procedure is proposed to approximate these terms. Results show, that the model proposed is able to mimic the exact hybrid terms, enhancing the accuracy of current hybrid RANS/LES approaches.;In a second effort, the Two Level Simulation (TLS) approach is proposed as a nearwall model for LES simulations. Here, TLS is first extended to compressible flows by deriving the small-scale equations required by the model. The new compressible TLS formulation, is validated simulating the flow over a flat-plate turbulent boundary layer. Overall, results are found in reasonable agreement with experimental data and LES calculations. Here, issues related with the integration criteria of the TLS small-scale equations are commented. Finally, TLS is implemented in the additive-filter formulation by replacing the RANS operator with the TLS large-scale operator. The new hybrid TLS/LES approach, is evaluated on the turbulent boundary layer case, in general, results are found in good agreement with experimental data and LES calculations. Here, the dependency of hybrid TLS/LES formulation on the blending function is similar to the hybrid RANS/LES approach when the hybrid terms are neglected. However, contrary to the hybrid RANS/LES case, including the hybrid terms in the TLS/LES formulation does not seem to improve the predictions. The low impact of the hybrid terms in the accuracy of the calculations, is explained by the similarity exhibited between the large-scale TLS operator and the LES space filter. Here, both operators represent space filters, therefore, the difference between TLS and LES variables is almost negligible, reducing drastically the importance of the hybrid terms.
机译:基于仅解决大尺度湍流运动的哲学,大涡模拟(LES)证明了以低计算成本提供高保真湍流模拟的潜力。但是,当控制特定流中湍流的尺度不大时,LES必须显着增加其计算成本才能提供准确的预测。在有边界的流动中就是这种情况,LES解决近壁结构所需的网格分辨率接近于解决最小的湍流耗散尺度的要求。因此,为了减少这种苛刻的要求,已经提出了使用雷诺平均Navier-Stokes(RANS)模型对近壁区域进行建模的方法,这就是所谓的RANS / LES混合方法。通过推导精确的混合RANS / LES Navier-Stokes方程,可以解决合并两种不同湍流建模方法的难题。这些方程式是通过引入加法滤波器得出的,该滤波器将RANS和LES运算符与混合函数线性组合。用加法滤波器得出的方程式可预测其他混合项,这些项代表RANS和LES公式之间的相互作用。从理论上讲,对混合项的预测表明,这两种方法的混合不能仅通过湍流模型方程来完成,正如当前的混合RANS / LES模型所主张的那样。精确混合RANS / LES方程的重要性在于通过在湍流平板边界层上进行数值计算来证明。结果表明,当混合公式从RANS转换为LES时,混合项有助于维持平衡的模型过渡。结果还表明,当不包括混合项时,计算的准确性强烈依赖于加法滤波器中实现的混合函数。另一方面,如果解决了精确的方程式,则结果只会受到混合函数特性的微弱影响。不幸的是,对于实际应用,不能精确地计算混合项。因此,提出了一种重建程序来近似这些项。结果表明,所提出的模型能够模拟精确的混合项,从而提高了当前混合RANS / LES方法的准确性。第二步,提出了两层模拟(TLS)方法作为LES模拟的近壁模型。 。在此,首先通过推导模型所需的小规模方程,将TLS扩展到可压缩流。验证了新的可压缩TLS公式,可以模拟平板湍流边界层上的流动。总体而言,发现的结果与实验数据和LES计算合理吻合。在此,对与TLS小规模方程式的积分标准有关的问题进行了评论。最后,通过将RANS运算符替换为TLS大规模运算符,可以在加性过滤器公式中实现TLS。在湍流边界层的情况下,对新的混合TLS / LES混合方法进行了评估,通常发现结果与实验数据和LES计算非常吻合。在这里,当忽略混合项时,混合TLS / LES公式对混合函数的依赖性类似于混合RANS / LES方法。但是,与RANS / LES混合情况相反,在TLS / LES公式中包括混合项似乎并不能改善预测。混合项对计算准确性的低影响是由大规模TLS运算符和LES空间过滤器之间表现出的相似性所解释的。在这里,两个运算符都表示空间过滤器,因此,TLS和LES变量之间的差异几乎可以忽略不计,从而大大降低了混合项的重要性。

著录项

  • 作者

    Sanchez Rocha, Martin.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号