首页> 外文学位 >DEVELOPMENT OF AN ELEVATED TEMPERATURE ALUMINUM ALLOY CONTAINING ALUMINUM(,3)X-TYPE DISPERSED PHASES (OSTWALD RIPENING, COARSENING, ZIRCONIUM, VANADIUM, PRECIPITATION).
【24h】

DEVELOPMENT OF AN ELEVATED TEMPERATURE ALUMINUM ALLOY CONTAINING ALUMINUM(,3)X-TYPE DISPERSED PHASES (OSTWALD RIPENING, COARSENING, ZIRCONIUM, VANADIUM, PRECIPITATION).

机译:含铝(,3)X型分散相的高温铝合金的开发(OSTRIALD熟化,粗化,锆,钒,析出)。

获取原文
获取原文并翻译 | 示例

摘要

The use of high strength Al alloys for numerous aerospace applications has been severely restricted by poor elevated temperature performance. Suitable dispersed phases in high temperature Al alloys should be thermodynamically stable and exhibit partial coherency with the matrix at temperatures of interest. Minimum lattice disregistry across the precipitate/matrix boundary yields a low interfacial energy and thus, a low driving force for Ostwald ripening.; The extents of solid solubility in the equilibrium, tetragonal Al(,3)X-type dispersed phases (X represents binary and ternary combinations of Hf, Ti, V and Zr) were examined using powder x-ray diffraction methods. Minimum lattice disregistry ((delta)) with the Al(ss) matrix was achieved by maximizing the amount of Ti or V added to the Al(,3)Hf and/or Al(,3)Zr phases without forming a co-intermetallic compound exhibiting a DO(,22) crystall structure. In comparison to Al(,3)Zr, with a ((delta)) equal to 2.88%, the addition of V to Al(,3)Zr in the ratio 7:1, i.e., Al(,3)(v(,0.875)Zr(,0.125)), results in a decrease in ((delta)) by approximately 17%. Electron diffraction revealed that the addition of V to the metastable cubic (L1(,2)) Al(,3)Zr phase also resulted in a reduction in the lattice disregistry across the precipitate/matrix boundary. In comparison with the cubic Al(,3)Zr phase, with a ((delta)) of approximately 1.0%, the Al(,3)(V(,0.875)Zr(,0.125)) phase exhibits a mismatch of approximately -0.14%.; The cubic Al(,3)(V(,0.875)Zr(,0.125)) phase was observed by TEM to be substantially more stable, i.e., resist transformation to the equilibrium tetragonal phase, when compared to the cubic Al(,3)Zr phase. It is proposed that a reduction in lattice disregistry results in a decrease in the strain energy component of the system's total free energy.; A systematic decrease in the coarsening rate with a reduction in the lattice disregistry for the cubic Al(,3)Zr, Al(,3)(V(,0.725)Zr(,0.275)) and Al(,3)(V(,0.875)Zr(,0.125)) and tetragonal Al(,3)Zr and Al(,3)(V(,0.875)Zr(,0.125)) phases is proposed to be representative of a decrease in the interfacial energy across the precipitate/matrix boundary. In comparison, the coarsening rates measured for the tetragonal and cubic Al(,3)(V,Zr) phases were measured to be two and three orders of magnitude slower than the coarsening rates measured for the dispersed phases present in Alcoa's Al-Fe-Ce and Pratt & Whitney's Al-Fe-(Mo) alloys at 425(DEGREES)C.
机译:高温性能不佳严重限制了高强度铝合金在众多航空航天应用中的使用。高温铝合金中合适的分散相应该是热力学稳定的,并且在感兴趣的温度下与基体具有部分相干性。穿过沉淀物/基质边界的最小晶格紊乱产生低的界面能,因此,奥斯特瓦尔德熟化的驱动力低。使用粉末X射线衍射法检查了在平衡的四方Al(,3)X型分散相(X代表Hf,Ti,V和Zr的二元和三元组合)中固溶度的程度。通过最大化添加到Al(,3)Hf和/或Al(,3)Zr相中的Ti或V的量而不形成共金属间化合物,可以使Al(ss)基体达到最小晶格失配(δ)化合物具有DO(,22)晶体结构。与(δ)等于2.88%的Al(,3)Zr相比,以7:1的比率向Al(,3)Zr中添加V,即Al(,3)(v( ,(0.875)Zr(,0.125)),导致((δ))降低约17%。电子衍射表明,将V添加到亚稳立方(L1(,2))Al(,3)Zr相中还导致了穿过析出物/基体边界的晶格失配减少。与立方((δ))约为1.0%的立方Al(,3)Zr相相比,Al(,3)(V(,0.875)Zr(,0.125))相的失配约为- 0.14%。 TEM观察到立方Al(,3)(V(,0.875)Zr(,0.125))相比立方Al(,3)基本上更稳定,即抵抗转变为平衡四方相Zr相。有人提出,减少晶格偏离会导致系统总自由能的应变能分量减少。立方Al(,3)Zr,Al(,3)(V(,0.725)Zr(,0.275))和Al(,3)(V( ,0.875)Zr(,0.125))和四方Al(,3)Zr和Al(,3)(V(,0.875)Zr(,0.125))相被提出来代表整个界面能的降低沉淀物/基质边界。相比之下,对四方和立方Al(,3)(V,Zr)相测得的粗化速率要比对美铝Al-Fe-Fe中存在的分散相测得的粗化速率慢两个和三个数量级。 Ce和Pratt&Whitney的Al-Fe-(Mo)合金的温度为425(摄氏)。

著录项

  • 作者

    ZEDALIS, MICHAEL S.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1985
  • 页码 267 p.
  • 总页数 267
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号