首页> 外文学位 >PLANNING SHORTEST PATHS (COMPUTATIONAL GEOMETRY, MOTION PLANNING, VISIBILITY GRAPHS, DIJKSTRA'S ALGORITHM, VORONOI DIAGRAMS).
【24h】

PLANNING SHORTEST PATHS (COMPUTATIONAL GEOMETRY, MOTION PLANNING, VISIBILITY GRAPHS, DIJKSTRA'S ALGORITHM, VORONOI DIAGRAMS).

机译:规划最短路径(计算几何,运动规划,可见性图,迪克斯特拉算法,沃罗尼图)。

获取原文
获取原文并翻译 | 示例

摘要

Recent research in the algorithmic aspects of robot motion and terrain navigation has resulted in a number of interesting variants of the shortest path problem. A problem that arises when planning shortest collision-free paths for a robot is the following: Find the shortest path from START to GOAL for a point moving in two or three dimensions and avoiding a given set of polyhedral obstacles. In this thesis we survey some of the techniques used and some of our recent results in shortest path planning. We introduce a useful generalization of the shortest path problem, the "weighted region problem". We describe a polynomial-time algorithm which finds a shortest path through "weighted" polygonal regions, that is, which minimizes the sum of path lengths multiplied by the respective weight factors of the regions through which the path passes. Our algorithm exploits the fact that optimal paths obey Snell's Law of Refraction when passing through region boundaries. We also give an O(n('2) log n) algorithm for the special case of the three-dimensional shortest path problem in which paths are constrained to lie on the surface of a given (possibly non-convex) polyhedron. Both algorithms make use of a new technique of solving shortest path problems; we call this technique a "continuous Dijkstra algorithm", as it closely resembles the method used by Dijkstra to solve simple shortest path problems in a graph.
机译:机器人运动和地形导航的算法方面的最新研究导致了最短路径问题的许多有趣变体。为机器人规划最短的无碰撞路径时,会出现以下问题:为从二维点到三维点移动的点找到从START到GOAL的最短路径,并避开给定的多面体障碍。在本文中,我们调查了最短路径规划中使用的一些技术和最近的一些结果。我们介绍了最短路径问题“加权区域问题”的有用概括。我们描述了一种多项式时间算法,该算法可找到通过“加权”多边形区域的最短路径,即,将路径长度的总和乘以路径所通过区域的各个权重因子的最小化。我们的算法利用了以下事实:当通过区域边界时,最佳路径应遵循Snell折射定律。对于三维最短路径问题的特殊情况,我们还给出了O(n('2)log n)算法,在这种情况下,路径被约束为位于给定(可能是非凸)多面体的表面上。两种算法都采用了一种解决最短路径问题的新技术。我们将此技术称为“连续Dijkstra算法”,因为它非常类似于Dijkstra用于解决图形中最短路径问题的方法。

著录项

  • 作者

    MITCHELL, JOSEPH S. B.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 1986
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号