首页> 外文学位 >Steady-state modelling and concentration-forcing operation applied to the methanol synthesis reaction over two industrial copper oxide, zinc oxide, aluminum oxide catalysts.
【24h】

Steady-state modelling and concentration-forcing operation applied to the methanol synthesis reaction over two industrial copper oxide, zinc oxide, aluminum oxide catalysts.

机译:在两种工业氧化铜,氧化锌,氧化铝催化剂上的甲醇合成反应中,采用稳态模型和强制强迫操作。

获取原文
获取原文并翻译 | 示例

摘要

The kinetics of the industrially important methanol synthesis reaction is not well understood. In particular, there is controversy over the relative contributions of carbon monoxide and carbon dioxide during methanol synthesis as well as over the identity of the active site(s) on the copper oxide, zinc oxide, aluminum oxide catalyst. In this study a steady-state rate expression was developed based on mechanisms reported in the literature as well as on kinetics data obtained in our laboratory. This rate expression was the first reported in the literature which included a mechanism-based term accounting for the contribution of carbon dioxide and was able to predict, better than other rate expressions previously reported in the literature, the kinetics behavior relative to data for two industrial methanol synthesis catalysts with different performance characteristics. In particular, the proposals that carbon monoxide hydrogenation and carbon dioxide hydrogenation mechanistically occur on separate sites and that carbon dioxide inhibits carbon monoxide hydrogenation but not vice versa appear to be justified.; Concentration-forcing operation was applied to methanol synthesis in a differentially operated plug-flow reactor in order to determine if production rates greater than that of the optimal steady-state production rate could be obtained. Improvement relative to the optimal steady-state methanol production rate were obtained over the BASF S 3-85 catalyst at {dollar}tau{dollar} = 12 seconds and a {dollar}gammasb{lcub}rm CO{rcub}{dollar} = 0.20, 0.27, and 0.40 for pure component cycling between hydrogen and carbon monoxide with a constant molar concentration of 2% carbon dioxide present in both parts of the cycle. The maximum improvement of 1.25 times the optimal steady-state rate was obtained at {dollar}tau{dollar} = 12 seconds and {dollar}gammasb{lcub}rm CO{rcub}{dollar} = 0.20. Improvement was also obtained over the ICI 51-2 methanol synthesis catalyst at {dollar}tau{dollar} = 12 and 24 seconds and {dollar}gammasb{lcub}rm CO{rcub}{dollar} = 0.15 and 0.20 for pure component cycling with a constant molar concentration of 3% carbon dioxide present in both parts of the cycle. The maximum improvement of 1.15 times the optimal steady-state rate was obtained at {dollar}tau{dollar} = 24 seconds and {dollar}gammasb{lcub}rm CO{rcub}{dollar} = 0.15. No improvement over the optimal steady-state methanol production rate was found in pure-component cycling between carbon monoxide and carbon dioxide with a constant molar concentration of 61% hydrogen or between hydrogen and a 19.6/78.4 mole percent mixture of CO/H{dollar}sb2{dollar} at the conditions studied.
机译:工业上重要的甲醇合成反应的动力学尚未得到很好的理解。特别是,在甲醇合成过程中一氧化碳和二氧化碳的相对贡献以及在氧化铜,氧化锌,氧化铝催化剂上的一个或多个活性位点的身份存在争议。在这项研究中,基于文献报道的机理以及在我们实验室中获得的动力学数据,开发了稳态速率表达。该速率表达式是文献中首次报道的,其中包括一个基于机制的术语,解释了二氧化碳的贡献,并且比先前文献中报道的其他速率表达式更好地预测了相对于两个工业数据的动力学行为。甲醇合成催化剂具有不同的性能特征。特别地,关于一氧化碳加氢和二氧化碳加氢在机械上发生在分开的位置并且二氧化碳抑制一氧化碳加氢而不是相反的提议似乎是合理的。为了确定能否获得大于最佳稳态产率的产率,将浓度强制操作应用于差异操作活塞流反应器中的甲醇合成。与巴斯夫S 3-85催化剂在{tau {tau {dollar} = 12秒和{dollar} gammasb {lcub} rm CO {rcub} {dollar} =在氢气和一氧化碳之间进行纯组分循环时,在循环的两个部分中均存在2%的恒定摩尔浓度的0.20、0.27和0.40。在{tau} tau {dollar} = 12秒和{dollar} gammasb {lcub} rm CO {rcub} {dollar} = 0.20时,可获得最佳稳态速率的1.25倍的最大改善。对于纯组分循环,ICI 51-2甲醇合成催化剂在{tau} tau {dollar} = 12和24秒以及{dollar} gammasb {lcub} rm CO {rcub} {dollar} = 0.15和0.20的情况下也获得了改进在循环的两个部分中均存在3%的恒定摩尔浓度的二氧化碳在{tau} tau {dollar} = 24秒和{dollar} gammasb {lcub} rm CO {rcub} {dollar} = 0.15时,获得了最佳稳态速率的1.15倍的最大改进。在恒定摩尔浓度为61%的氢气的一氧化碳和二氧化碳之间或在氢气与19.6 / 78.4摩尔%的CO / H混合物之间进行纯组分循环时,没有发现最佳稳态甲醇生产率的改善} sb2 {dollar}在研究的条件下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号