首页> 外文学位 >Multi-objective optimal design of control systems.
【24h】

Multi-objective optimal design of control systems.

机译:控制系统的多目标优化设计。

获取原文
获取原文并翻译 | 示例

摘要

Feedback controls are usually designed to achieve multiple and often conflicting performance goals. These incommensurable objectives can be found in both time and frequency domains. For instance, one may want to design a control system such that the closed-loop system response to a step input has a minimum percentage overshoot , peak time, rise time, settling time, tracking error, and control effort. Another designer may want the controlled system to have a maximum crossover frequency, maximum phase margin and minimum steady-state error . However, Most of these objectives cannot be achieved concurrently. Therefore, trade-offs have to be made when the design objective space includes two or more conflicting objectives. These compromise solutions can be found by techniques called multi-objective optimization algorithms. Unlike the single optimization methods which return only a single solution, the multi-objective optimization algorithms return a set of solutions called the Pareto set and a set of the corresponding objective function values called the Pareto front.;In this thesis, we present a multi-objective optimal (MOO) design of linear and nonlinear control systems using two algorithms: the non-dominated sorting genetic algorithm (NSGA-II) and a multi-objective optimization algorithm based on the simple cell mapping. The NSGA-II is one of the most popular methods in solving multi-objective optimization problems (MOPs). The cell mapping methods were originated by Hsu in 1980s for global analysis of nonlinear dynamical systems that can have multiple steady-state responses including equilibrium states, periodic motions, and chaotic attractors. However, this method can be also used also to solve multi-objective optimization problems by using a direct search method that can steer the search into any pre-selected direction in the objective space.;Four case studies of robust multi-objective/many-objective optimal control design are introduced. In the first case, the NSGA-II is used to design the gains of a PID (proportional-integral-derivative) control and an observer simultaneously. The optimal design takes into account the stability robustness of both the control system and the estimator at the same time. Furthermore, the closed-loop system's robustness against external disturbances and measurement noises are included in the objective space.;The second case study investigates the MOO design of an active control system applied to an under-actuated bogie system of high speed trains using the NSGA-II. Three conflicting objectives are considered in the design: the controlled system relative stability, disturbance rejection and control energy consumption. The performance of the Pareto optimal controls is tested against the train speed and wheel-rail contact conicity, which have huge impact on the bogie lateral stability.;The third case addresses the MOO design of an adaptive sliding mode control for nonlinear dynamic systems. Minimizing the rise time, control energy consumption, and tracking integral absolute error and maximizing the disturbance rejection efficiency are the objectives of the design. The solution of the MOP results in a large number of trade-off solutions. Therefore, we also introduce a post-processing algorithm that can help the decision-maker to choose from the many available options in the Pareto set.;Since the PID controls are the most used control algorithm in industry and usually experience time delay, a MOO design of a time-delayed PID control applied to a nonlinear system is presented as the fourth case study. The SCM is used in the solution of this problem. The peak time, overshoot and the tracking error are considered as design objectives and the design parameters are the PID controller gains.
机译:反馈控件通常旨在实现多个且经常相互冲突的性能目标。这些不可估量的目标可以在时域和频域中找到。例如,可能需要设计一种控制系统,以使闭环系统对阶跃输入的响应具有最小的过冲百分比,峰值时间,上升时间,稳定时间,跟踪误差和控制工作量。另一个设计人员可能希望受控系统具有最大的交叉频率,最大的相位裕度和最小的稳态误差。但是,大多数这些目标不能同时实现。因此,当设计目标空间包含两个或多个相互冲突的目标时,必须进行权衡。这些折衷的解决方案可以通过称为多目标优化算法的技术找到。与仅返回单个解决方案的单一优化方法不同,多目标优化算法返回一个称为Pareto集的解决方案集和一组称为Pareto前沿的相应目标函数值。线性和非线性控制系统的目标优化(MOO)设计使用两种算法:非支配排序遗传算法(NSGA-II)和基于简单单元映射的多目标优化算法。 NSGA-II是解决多目标优化问题(MOP)的最受欢迎的方法之一。细胞映射方法是Hsu在1980年代提出的,用于非线性动力学系统的全局分析,该系统可以具有多个稳态响应,包括平衡状态,周期性运动和混沌吸引子。但是,这种方法也可以通过使用直接搜索方法来解决多目标优化问题,该方法可以将搜索引导到目标空间中的任何预选方向。鲁棒多目标/许多-介绍了目标最优控制设计。在第一种情况下,NSGA-II用于同时设计PID(比例积分微分)控件和观察者的增益。最佳设计同时考虑了控制系统和估算器的稳定性。此外,在目标空间中还包括了闭环系统对外部干扰和测量噪声的鲁棒性。第二个案例研究了采用NSGA的应用于高速列车欠驱动转向架系统的主动控制系统的MOO设计。 -II。设计中考虑了三个相互矛盾的目标:受控系统的相对稳定性,干扰抑制和控制能耗。针对列车速度和轮轨接触锥度测试了帕累托最优控制的性能,这对转向架的侧向稳定性产生了巨大影响。第三种情况是针对非线性动态系统的自适应滑模控制的MOO设计。设计的目标是使上升时间最短,控制能量消耗以及跟踪积分绝对误差和使干扰抑制效率最大化。 MOP的解决方案导致大量折衷解决方案。因此,我们还介绍了一种后处理算法,可以帮助决策者从Pareto集中的许多可用选项中进行选择。由于PID控制是工业上最常用的控制算法,并且通常会遇到时间延迟,因此,MOO作为第四种案例研究,提出了一种应用于非线性系统的时滞PID控制的设计。 SCM用于解决此问题。峰值时间,过冲和跟踪误差被视为设计目标,设计参数是PID控制器的增益。

著录项

  • 作者

    Sardahi, Yousef.;

  • 作者单位

    University of California, Merced.;

  • 授予单位 University of California, Merced.;
  • 学科 Mechanical engineering.;Educational leadership.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号